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Introduction

• The Kramers-Kronig relations are based 
upon the fundamental notions of linearity
and causality. 

• The relations connect the real and imaginary 
parts of a susceptibility function (or causal 
transform).

• The relations also provide a criterion for the 
causal consistency of a measurement or 
model of the propagation mechanisms of a 
medium. 
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Motivation: Thought Experiment *

• Assume we have an ‘ideal’ material that is 
able to absorb the sound at only a single 
frequency without affecting the signal in any 
other manner.

• We will see that this suggests there is a 
relation between the absorption and change 
in phase as a signal propagates through a 
material.

*J. S. Toll, Phys Rev, 104104, pp. 1760-1770, 1956.
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Motivation: ‘Ideal’ Material
Incident Signal Output Signal

Attenuate
5 MHz signal
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Motivation: Observations

• The acausal aspect of this thought experiment is 
apparent from an output signal arriving prior to an 
input signal.

• To avoid the violation of causality, the attenuation at 
a particular frequency must be accompanied by a 
corresponding shift in the phases at all other 
frequencies, such that we observe destructive 
interference for t < 0.

• The relationship between the attenuation and phase
can be determined from the appropriate dispersion 
relation.
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History: Development

• Developed originally to relate the dispersion and 
absorption of x-rays from a linear and causal basis 
(1920s)
– R. de Laer Kronig, J. Opt. Soc. Am. 1212, 547-557 (1926).
– H.A. Kramers, Atti Congr. Intern. Fisici 22, 545-557 (1927)

• Applied to a range of wave-based physics
– Magnetic Resonance
– Optical Spectroscopy
– (Quantum) Particle Scattering
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History: Applications to Acoustics

• Theoretical Description
– V.L. Ginzberg, Sov. Phys. Acoust. 11, 32-41 (1955).

• Geophysics
– W.I. Futterman, J. Geophys. Research 6767, 5279-5291 (1962).

– G.L. Lamb, J. Geophys. Research 6767, 5273-5277 (1962).

• Underwater Acoustics
– C.W. Horton, J. Acoust. Soc. Am. 5555, 547-549 (1974).

• Ultrasonics
– M. O’Donnell et al., J. Acoust. Soc. Am. 6363, 1935-1937 (1978).



NIST Inaugural CTAP Workshop
August 9-10, 2004

Review: Necessary Conditions*

• We assume that the system of interest 
is linear and passive.

• Assume also that the inverse Fourier 
transform g(t) of    vanishes for 
t < 0.
⇒ Real and imaginary parts of           are 
related by the Hilbert transform

( )�G ω

( )�G ω

*part of Titchmarsh’s theorem (See, for example,  H.M. Nussenzveig, 
Causality and Dispersion Relations (Academic Press, New York, 1972).)
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The integral relationships between the 
real and imaginary parts of a causal 
transform           can be written as( )�G ω

Review: Hilbert Transform Pair

( ) ( )� �

1 1
Im ReG Gω ω

π ω
⎡ ⎤⎛ ⎞= + ∗ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

P

( ) ( )� �

1 1
Re ImG Gω ω

π ω
⎡ ⎤⎛ ⎞= − ∗ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

P
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Review: Kramers-Kronig Relations

The Hilbert transform pair can be 
written as integrals over only positive 
frequencies

( ) ( )
2 2

0

Im2
Re

G
G d

ω ωω ω
π ω ω

∞ ′ ′
′=

′ −∫P

( ) ( )
2 2

0

Re2
Im

G
G d

ωωω ω
π ω ω

∞ ′
′= −

′ −∫P
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Review: Acoustic Propagation

The propagation of acoustic waves can 
be described by the propagation term

where is the complex acoustic 
wave number.

( )( )�i K z t
e

ω ω−

( )�K ω
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Review: Causal Transform

• A causal transform commonly used in 
ultrasonic measurements is the transfer 
function of a medium

• Mathematically, it is more convenient * to 
consider the logarithm of the transfer 
function

( ) ( )[ ]� �, expH d iK dω ω=

( ) ( ) ( ) ( )
�

�

ln ,H d
iK i

d c
ω ωω α ω

ω
= = − +

*R.E. Burge et al., Proc. Roy. Soc. Lond. A 350, pp. 191-212 (1976).
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Review: Dispersion Relations

If we consider the complex propagation 
factor

we can write* the following relation between 
the phase velocity and attenuation

( ) ( )1 1
c

ω α ω
ω π ω

⎡ ⎤⎛ ⎞= − ∗ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
P

( ) ( ) ( ) ( )
� �G iK i

c
ωω ω α ω
ω

≡ = − +

*K.R. Waters et al., J. Acoust. Soc. Am. 108108(5), Pt. 1, 2114-2119 (2000).
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Review: Approaches to Application

• Differential form: Nearly-Local
– M. O’Donnell et al., J. Acoust. Soc. Am. 6363(6), 1935-1937 (1978).

– K.R. Waters et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr.
5050(1), 68-76 (2003).

• Integral form: Extrapolation
– K.R. Waters et al., J. Acoust. Soc. Am. 108108(2), 556-563 (2000).

• Integral form: Truncation
– J. Mobley et al., J. Acoust. Soc. Am., 108108(5), 2091-2106 (2000).

• Time-Domain Convolution: Extrapolation 
– T.L. Szabo, J. Acoust. Soc. Am., 9696(1), 491-500 (1994).
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Linear-with-Frequency Attenuation 

Assuming a linear-with-frequency 
attenuation model (                 ), one 
finds for the K-K dispersion relation

( ) ( )0
0

0

1 1 2 ln
c cω ω

ωαπ ω
− = −

( ) 0α ω α ω=
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PMMA: Propagation Properties

*K.R. Waters et al., J. Acoust. Soc. Am. 108108(2), 556-563 (2000).
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Nearly-Local Approximation

• The nearly-local approximation* provides a 
simple differential relation between the 
attenuation coefficient and phase velocity

• However, it predicts linear-with-frequency
dispersion for an ω2 attenuation. 

2 1
( )

2 ( )
d

d c
πα ω ω

ω ω
⎛ ⎞≈ − ⎜ ⎟
⎝ ⎠

*M. O’Donnell, E.T. Jaynes, J.G. Miller, J. Acoust. Soc. Am., 6363(6), 1935-1937 (1978).

2
0

0

1 1 2 ( )
 

( ) ( )
d

c c

ω α ω ω
ω ω π ωω

′ ′− ≈ − ∫ ′

or
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Dispersive Wave Equation

The wave equation proposed by Szabo* 
includes a convolution loss term          that 
accounts for both attenuation and dispersion 
directly in the time domain

( ) ( ) ( )( ) ( ) ( )
2

2
2 2

0 0

,1 1
, , ,

p z t
p z t t p z t s z t

c t c tγ
∂∂∇ − ∗ − =

∂ ∂
L

( )tγL

*T.L. Szabo, J. Acoust. Soc. Am., 9696(1), 491-500 (1994).
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Time-causal approach

• The convolution loss term (    ) is composed 
of an attenuation term (     ) and a dispersive 
term ( ) that are related by the time-causal 
relations to insure causality.

• The attenuation part of the convolution loss 
term is given by the inverse Fourier 
transform of the attenuation coefficient.

( )sgnk i t α= −L L

( )sgn ki tα = +L L

αL

kL

kL

γL
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For the case of power law attenuation
, the convolution loss term can be 

calculated as

Recall

Convolution Loss Term

( ) ( ) ( ){ }

( ) ( )

1

1

21

1
4 !cos 1

2 y

t

y y
t

γ α ω

π

−
+

+
+

= −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

L Ft

t

( ) ( ) ( )( ) ( ) ( )
2

2
2 2

0 0

,1 1
, , ,

p z t
p z t t p z t s z t

c t c tγ
∂∂

∇ − ∗ − =
∂ ∂

L

( )1 2y< <
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H

Kramers-Kronig and Time-Causal

*K.R. Waters et al., J. Acoust. Soc. Am. 108108(5), Pt. 1, 2114-2119 (2000).

γ ω( ) = −α ω( ) + ik ω( )

( )sgni t+ ( ) ( ) ( )kt t i tγ α= +L L LTime Causal

Kramers-Kronig

F
1−

F



NIST Inaugural CTAP Workshop
August 9-10, 2004

Observations

• The time-causal and Kramers-Kronig
approaches to the study of dispersion are 
complementary methods.

• The time-domain convolution operator can 
be extended to other attenuation forms, 
namely those that have an inverse Fourier 
transform.
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Media with Power Law Attenuation

Assuming a power law attenuation 
model ( ), one finds for the 
generalized Kramers-Krönig dispersion 
relation

( ) ( ) ( )1 1
0 0

0

1 1
tan

2
y yy

c c
πα ω ω

ω ω
− −⎛ ⎞− = −⎜ ⎟

⎝ ⎠

( ) 0
yα ω α ω=

( )1 2y< ≤
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Silicone fluid: Attenuation and Dispersion

*K.R. Waters et al., J. Acoust. Soc. Am. 108108(5), Pt. 1, 2114-2119 (2000).
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Cancellous Bone: Inconsistency ?

• The Kramers-Kronig relations suggest that 
whenever the attenuation coefficient 
increases approximately linearly with 
frequency, then the phase velocity increases
approximately logarithmically with 
frequency.

• Measurements from several laboratories on 
cancellous bone appear to be in conflict with 
this theoretical prediction.
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Cancellous Bone: Measurements*

*P. Droin et al., IEEE UFFC, 4545(3), pp. 581-592 (1998).
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Cancellous Bone: Consistency

• Agreement between experimental 
measurement and the K-K relations indicates 
a consistency with 
– the linear and causal basis of the K-K relations
– the appropriateness of the chosen model

• A disagreement between experimental 
measurement and the K-K relations would 
suggest an inconsistency with the above 
condition(s).
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Summary

• K-K relations are based on the notions of 
linearity and causality.

• K-K relations are useful for checking 
consistency of a model or measurement.

• Time-causal relations and K-K relations can 
be thought of as a Fourier transform pair.

• Time-causal relations and K-K relations are 
complementary approaches to the study of 
dispersion.


