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ABSTRACT

This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality in the challenging field of butt joint welding with full penetration under stochastically changing boundary conditions, e.g. major gap width variations. GMAW experiments performed on mild-steel plates (3 mm of thickness), show that high quality welds with uniform back-bead geometry are achievable for gap width variations from 0.5 mm to 2.3 mm - scanned 10 mm in front of the electrode location. In this research, the mapping from joint geometry and reference weld quality to significant welding parameters, has been based on a static multi-layer feed-forward network. The Levenberg-Marquardt algorithm, for non-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training.

KEYWORDS
GMA welding, butt joint welding with full penetration, open-loop weld geometry control, neural network modeling, Marquardt algorithm, and Bayesian regularization.
INTRODUCTION
Gas Metal Arc Welding (GMAW) is - due to its considerable flexibility, productivity and weld quality - the most prevalent arc welding process in industry; but unfortunately also one of the most complex processes. Basically, the GMAW process involves conductive, convective, radiative heat and metal transfer, phase transformations among many unknown disturbances. Accordingly, the GMAW process is a time varying, non-linear, coupled, multi-variable process whose highly complex physics, is not fully comprehended neither qualitatively nor quantitatively. Selecting appropriate welding parameters to get a given weld quality (i.e. weld geometry), is clearly a non-trivial task. Furthermore, even minor changes in system dependent parameters, e.g. joint geometry, heat conduction, etc., from given reference values necessitate a continuous adjustment of significant welding parameters, such as welding speed, current, voltage etc. to facilitate a sufficient quality and shape of a desired weld. Therefore, to handle such situations in a reasonable way it is appropriate to obtain a mathematical model that correlate welding process parameters to weld quality - or vice versa; but obviously, it seems to be a challenging issue in the field of arc welding automation.

During the past decades, intense research into the area of mathematical modeling of the complex arc welding processes has been made to increase the understanding of the effects of the arc welding process parameters on the weld quality. This extended work includes theoretical studies based on heat transfer and fluid flow theory etc. as well as empirical methods based on knowledge collected from specific weld task experiments. However, the many years of work has proven that the development of exact and reliable models based on the fundamental physical laws are extremely complicated if not impossible, and even the most promising models are typically unsuitable for real-time control purposes. Even though empirical models inherently have many drawbacks, such as sensitivity on geometry and material properties, and much more, they tend to have some advantages in the area of arc welding automation. Classic regression analysis was applied to welding geometry research in the late half of the 80'ties (Ref. 1), while the first step towards the application of artificial neural network (ANN) was reported a few years later (Ref. 2). In this, ANN was used to determine the relationship between significant welding parameters and characteristic weld bead dimensions for gas tungsten arc welding.

Since the publication of (Ref. 2), a diversity of papers, typically addressing optimization and control, have been published underlining the quality of ANN, as a generic tool with a high degree of flexibility for modeling and control of a great variety of arc welding processes on different kind of joint geometries, materials, etc. (Ref. 3-8). Some of the publications, e.g. (Ref. 7-8) show that artificial neural networks are indisputable alternatives to classic regression analysis.

Still, research on modeling and control of real-life welding based on ANN techniques are limited and more contributions are needed. Therefore, in this paper research on the ANN based modeling and control of the GMAW process, is presented. A model based control system has been developed, that continuously compensate for gap width variations in butt joint welding with full penetration by selection and maintenance of the equipment parameters necessary to achieve a user specified reference back-bead geometry, which is naturally a considerable factor to the final weld quality.

After a short introduction of ANN, the paper proceeds with a description of the general considerations concerning the welding experiments that have been carried out. Next, the results from these experiments are presented and discussed together with the applied control strategy, and finally a conclusion on the work is drawn.

THE MODELING TECHNIQUE: ARTIFICIAL NEURAL NETWORK (ANN)

Due to their theoretical ability to approximate arbitrary non-linear mappings, ANN's are typically applied when appropriate analytical models are unknown or extremely complex. In mathematical terms, an ANN can be characterized as a highly complex, non-linear mapping function, which in a given domain transforms input to output. Although an ANN model may be very complex, the basic mathematics is relatively simple. Modeling with ANN is empirical modeling, and thus a sample database covering the entire problem domain must be available, similar to conventional regression analysis. When presented with inputs inside this domain, but not appearing in the training data, a suitably trained network will have the ability to generalize well.

The static multi-layer feed-forward network with biases and at least one sigmoid layer is widely recognized for the capability of approximating any function with a finite number of discontinuities (i.e. non-linear, coupled, and multivariable systems such as e.g. the GMAW process addressed here). In the context of this paper, a feed-forward network of this type, shown in Figure 1, is applied.
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Figure 1: Two-layer feed-forward network, performing the mapping y2 = F(x) : 
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The mapping from input to output can be expressed as follows:
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where x (N0 ( 1) is an input vector, while yk (Nk ( 1) is an output vector from the k'th layer. The sigmoid-function is applied as transfer function: fk(s) = (1+exp(-s))-1 (Nk ( 1). Ak is a weight matrix of dimension Nk ( Nk-1, bk is a bias weight column vector of length Nk, and n is the number of layers.

In this paper the Levenberg-Marquardt algorithm for non-linear least squares (a standard numerical optimization technique) is used with the back-propagation algorithm for training the feed-forward neural network. In (Ref. 9), it has been shown that the Levenberg-Marquardt algorithm is much more efficient than other known algorithms, when the network contains less than a few hundred weights, which is the case in this paper.

Minimizing the risk of inexpedient over-training by use of a so-called regularization technique (Ref. 10), is more important than guaranteeing a fast rate of convergence. Instead of minimizing the sum of squared errors, F = ED, which is the traditional approach for network training, the objective of this technique is to minimize a performance function with the following structure (for training based on a set of weld data of size m containing: {x,t}(1),{x,t}(2),…,{x,t}(m)):
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As shown in (Ref. 10), this modification of the performance function - the addition of the term EW, representing the sum of squares of the network weights - will improve network generalization, so that any modestly oversized network will have the ability to sufficiently represent the true underlying function. The basic idea of the method, which consistently produces networks with good generalization abilities, is that the true underlying function is assumed to have a limited degree of smoothness, for which reason this method constrains the size of the network weights. The optimal setting of the regularization parameters, ( and (, is based on the Bayesian theory, and so this technique is referred to as Bayesian regularization. Furthermore, it is assumed that the experimental data are infected by Gaussian noise, and finally, it should also be noted that input and output, in this paper, are scaled similar to (Ref. 2):
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where pmax and pmin are maximum and minimum, respectively, of the physical data parameter p, and pn is the scaled parameter applied to the network.

GENERAL CONSIDERATIONS CONCERNING THE WELDING EXPERIMENTS

The developed system is based on an ANN model, which facilitates the mapping from some characteristic features describing the weld quality and joint geometry to some significant welding equipment parameters. For that reason, it is assumed that a correlation between the characteristic features, shown in Figure 2, and significant welding parameters (welding speed, voltage, and wire feed speed) emerge during welding, by which it is possible to design and train an ANN model that estimate feasible welding parameters. Furthermore, it is to be noted that the control system design is based on the static characteristics of the welding process.
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Figure 2: The process model maps weld quality and joint geometry into welding parameters.

To perform the described experimental validation, a PC-based welding system has been established, consisting of a welding machine, a two-axis table system, and a laser vision system, which is applied for real-time seam tracking and online gap width measurement. The joint geometry is scanned 10 mm in front of the welding torch. A schematic diagram of the system is shown in Figure 3, while technical specifications relevant for the experiments are given in Table 1.
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Figure 3: Structural diagram of the experimental system.

	Joint type
	Butt weld (without backing)

	Plate material
	Mild steel (S235)

	Plate thickness
	3 mm

	Plate dimensions (L(W)
	330 ( 50 mm

	Power supply
	Constant voltage machine

	Wire type
	EN440 – G3Si1

	Wire diameter
	Ø1.2 mm

	Shielding gas
	Mixture: 92 % Ar and 8 % CO2

	Gas flow rate
	15 l/min

	CTWD
	10 mm

	Welding torch orientation
	Horizontal (PA) with a travel angle of 90 degrees


Table 1: Technical specifications for the experiments conducted (CTWD: Contact Tip to Workpiece Distance). 

OPEN-LOOP CONTROL STRATEGY

The experimental investigation of the applicability of ANN in an open-loop control strategy contains two steps: (1) To verify that the proposed ANN model based on static weld data in fact can fit the characteristics of the weld task in a suitable way. (2) To examine the applicability of the static ANN process model in an open-loop control system controlling a dynamic process.
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Figure 4: The developed process model applied to an open loop control system.

According to (1) the applicability of the developed process model (Figure 4), in terms of precision and robustness, has been demonstrated. A series of GMAW experiments has been conducted to obtain the decisive knowledge about how the significant welding parameters affect the back-bead geometry, given different joint geometries. Consequently, a total of 39 quality welds have been made, and the welding parameters have been selected within the domain of useable parameters, when parts to be welded are fixed to produce given constant gap widths within a prescribed interval. During the welding process, the gap width is scanned 10 mm in front of the welding torch following the centerline of the gap, while the back-bead width and height have been measured afterwards. The relatively few experiments have been carried out in an unsystematically way for gap widths within the interval of 0.0-2.3 mm (Table 2), and the main objective of the experiments has been to maintain homogenous back-bead geometries, as shown in Figure 5.

Obviously, different sets of welding parameters for a given gap width can produce identical back-bead geometries. Therefore, for later use of the weld data it is crucial to perform these preliminary experiments with a certain degree of attention to the aim of this original research.

	 Weld

No.
	Wire feed speed

[m/min]
	Voltage

[V]
	Welding speed

[mm/min]
	Gap

width

[mm]
	Back-bead width

[mm]
	Back-bead height

[mm]

	8
	3.8
	19.0
	325
	1.00
	3.70
	1.00

	16
	5.0
	21.0
	375
	0.40
	2.80
	0.60

	25
	2.8
	18.0
	310
	2.00
	3.70
	0.85

	26
	3.0
	18.0
	350
	1.60
	2.80
	0.40

	Min
	2.8
	18.0
	300
	0.00
	1.50
	0.25

	Max
	5.8
	22.0
	375
	2.30
	5.10
	2.70


Table 2: Four out of 39 experiments are shown with the boundary limits of each parameter. The considerable variation of the gap width obviously implies major changes in wire feed speed and voltage.

[image: image12.wmf]
Figure 5: The ('s indicate the back-bead width, for which the solid line represent the mean value (<wb> = 3.17 mm), while the o's and dotted line represent the back-bead height (<hb> = 0.92 mm).

Based on these experimentally obtained weld data, a static multi-layer feed-forward network has been trained by supervised learning. The trained network manages the mapping shown in Figure 4. The selection of feasible design parameters of the neural network, such as the number of hidden layers, the number of nodes in each layer, type of activation function etc., rely on the specific modeling task. In this study, a two-layer network with a hidden layer containing three neurons and an output layer containing three neurons as well - according to the number of outputs - has been selected. All neurons contain the sigmoid transfer function. Data sets from 33 of these experiments have been used for network training, while the remaining 6 data sets have been used for testing the generalization capabilities of the trained network.

The Bayesian regularization technique (Ref. 10) introduces (, a so-called effective number of parameters, which is a measure of the number of parameters (weights) in the neural network that are effectively used in reducing the error function. In the network training ( = 19.52, which is much less than the 24 weights that appears in the chosen network. Accordingly, the neural network applied seems to be large enough to properly represent the true function.

The performance evaluation of the trained network has been based on a traditional error analysis applied to the training and test data sets, respectively. Table 3 shows the absolute mean errors for the welding parameters, and on the basis of these results the trained network seems to generalize well. Furthermore, to investigate the network performance in further detail, a linear regression analysis between the network response and the corresponding measured data sets has been performed. The result of this analysis is shown in Figure 6, and it appears that the wire feed speed and voltage correlate well, while the welding speed does it barely as well. However, it is notable that especially the wire feed speed has a great influence on the penetration, and consequently, it is very important that this particular welding parameter is well correlated. Since the wire feed speed varies between 2.8-5.8 m/min, while the welding speed only varies 300-375 mm/min, it is concluded that the influence of the welding speed is much less that the effect of the wire feed speed in this series of experiments. 

	
	Wire feed speed

[m/min]
	Voltage

[V]
	Welding speed

[mm/min]

	Training data
	0.20
	0.32
	12.37

	Verification data
	0.35
	0.41
	12.36


Table 3: The prediction accuracy of the trained ANN is shown by the absolute mean errors for the welding parameters. It seems as if the ANN identifies the underlying trends rather than just memorizes the input/output relations of the experimental data sets.
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Figure 6: Predicted versus measured welding parameters for the complete data set. For wire feed speed, voltage, and welding speed, the correlation coefficients are 0.95, 0.94, and 0.77, respectively.

Simulations of control performance were conducted with the trained network, and according to Figure 5, the desired back-bead geometry were set as hb = 0.75 mm and wb = 3.0 mm. In Figure 7 and 8 results from a simulation with significant gap width variations along the joint - from 0.5 mm to 2.3 mm - are shown. From the photograph shown in Figure 7, it is seen how the front-bead geometry varies due to the continuous adjustment of welding parameters. As expected, the front-bead geometry became larger when the gap width became smaller and vice versa. From Figure 8, it follows that a uniform back-bead has been obtained, even though minor local variations of the height, as well as of the width, appear along the weld. The mean values of the back-bead height and width are 0.76 mm and 3.19 mm, respectively, and in general, it is concluded that quality welds, fully competitive with skilled manual welding, are achievable.
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Figure 7: A test weld and its measured gap width variation.
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Figure 8: Back-bead height and width according to the simulation shown in Figure 7.

CONCLUSION

Physical experiments have shown that the weld bead geometry is extremely sensitive to gap width variations in GMA butt joint welding with full penetration, and consequently, a continuous adjustment of welding parameters is essential for the realization of a uniform back-bead geometry. An open-loop control strategy, based on neural network technology, was experimentally investigated and applied successfully to this particular weld task.

In fact, a series of laboratory based experiments shows, that it is possible to apply static data to train an ANN to obtain a model of the GMAW process, and that the model is feasible for high quality, open-loop butt joint welding with full penetration of 3 mm plates with variations in the gap width from 0.5 to 2.3 mm. 

Unfortunately, the weld quality has proven to be quite sensitive to changes in welding conditions (not only the gap width), and since it is expensive, impractical, and often impossible to sustain constant welding conditions in an industrial environment, the open-loop control strategy is typically too vulnerable to be applied in such disturbing surroundings. For that reason future work will be focused on development of a closed-loop control system based on online monitoring and control of the weld quality.
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