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Surface magnetic phase diagram for a semi-infinite ferromagnet
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The phase diagram for the orientation of the surface region is calculated in the parameter space defined by
the surface and bulk anisotropy in semi-infinite ferromagnetic systems and in thin ferromagnet films. Surface
magnetic canting always occurs when the magnitude of the surface anisotropy is comparable with the interlayer
exchange interaction. Increasing the thickness of a thin film supported on a hard magnetic substrate induces a
spin reorientation transition from the uniform, in-plane magnetic structure to a canted state. The inverse spin
reorientation transition from the canted state to the uniform, in-plane magnetic structure with thickness is
demonstrated for a thin film supported on a nonmagnetic substrate. A discrete layer-by-layer approach is
developed and compared to the continuum approach. We consider the 1.5 atomic-layer system of Fe on Gd and
find that it is a good physical realization of the model.
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E= _JE COS( 0n— 0n+1) + KSSin2 01+ KBE S|n2 6n,
Determining the equilibrium state of magnetic moments n=1 n=2 o
at surfaces and interfaces is key to understanding the mag-

netic behavior of semi-infinite SyStemS. In particular, Sur-where gn is the ang]e between th&h |ayer vector moment
faces and interfaces can exhibit strong anisotrépy,due to  and the surface plane as shown in Fig. 1. Below we consider
the reduced symmetry. It has been shown tgtcan favor  the case of a semi-infinite crystaN(-) in Secs. I-lll, V,
either perpendicular or in-plane magnetization alignmient.and VI and also thin films with a finite number of layehs,
This term competes with magnetocrystalline and dipole enin Sec. IV.
ergy of the bulk systemKg, which combined, can again We demonstrate that the onset of SMC follows the crite-
favor either direction of bulk magnetization alignment. Con-rion for instability of a uniform magnetic structure. This is
sideration of these effects leads to the possibility that gimilar to the approach used in Ref. 7. Within this model we
domain-wall-like structure can exist in the surface redion. €xpress this criterion in terms of the model parameters in
This would be manifested in a surface magnetic cantinglosed form. Basing on this result we build a phase diagram
(SMC) with a gradual transition to the equilibrium magneti- In coordinates of reduced-anisotropy constants
zation in the bulk.

At present, it is generally believed that SMC takes place Ko 2Ks _ 2Kg
due to the difference between the surface and bulk anisot- s

T ket
ropy, characterized by the anisotropy constdt¢sandKg, ) ] ]
respectivel?? Leaving aside the problem of the origin of Which show the regions corresponding to SMC. We propose
surface and bulk anisotropy, we find that the region in thdtS Physical treatment for the cases whige<0, kg>0 and

phase diagram in coordinate {,Kg) that encompasses !‘5>0’ k3<0 in SE?C' | and Sec. II, respe(_:tively. Of particula_lr
SMC has, to date, not been determifiéfThe main goal of interest is the region where the surface is always canted, i.e.,
this article is to fill this gap in magnetic surface science. )

We consider this problem in the framework of the sim- 9
plest approach: a Heisenberg model with quasiclassical ve ) 6, 0, Oy =0
tor moments and an isotropic exchange interaction. In this
model, the layer indexx=1 corresponds to the top surface .
atomic layer, where a second-order anisotropy is assignet N=1 |N= N=3 N N+1
with anisotropy constanKs. All of the inner layers g
=2,3,... N) are considered to be bulklike, with second-
order anisotropy characterized by const&ty, which is
independent of the layer index In addition we include
an interlayer ferromagnetic exchandg,,,=J>0. Within
this approach, the problem is reduced to the consideration FIG. 1. Discrete layer model used for the semi-infinite ferro-
of a one-dimensional chain, and thus the endfgmay be  magnet exhibiting a bulk in-plane anisotropy and a surface perpen-
written as dicular anisotropy. Surface magnetic canting is shown.

INTRODUCTION
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where SMC takes place regardless of how large the magnin-plane orientation. SMC takes place only when it becomes

tude of reduced-bulk-anisotropy constdaptis. This case is energetically favorable compared to the uniform in-plane

discussed in Sec. Il. structure. Therefore, the evaluation for the criterion of SMC
In Sec. Il we derive the evolution of the borders in the implies that each anglé, in Eq. (1) has to be varied away

(ks,kg) phase diagram with an external magnetic fieltve ~ from zero, and the resulting perturbation on the energy

show that in the casles<<0kg>0 accounting for an in-plane evaluated. For the case of small deviationgpf the expres-

magnetic field leads to a finite interval ky where the ap- sion for energy in Eq(1) may be expanded to second order

pearance of SMC is suppressed. Thus, in this case there figr eaché,,

some threshold magnitude k§ for the appearance of SMC. .

Similar results are obtained for the casg>0kg<O0. E~Eo+ 0TA0,  6=(01,6,,....00). 2
In Sec. IV this method is then applied to thin magneticHere E, is a part of the energy-independefit and A is a

films, and it is shown that the finite thickness of a film sup-square NXN) three-diagonal symmetric matrix with real

ported on a hard magnetic substrate gives rise to a decreaskements. The set df eigenvectorsa,, of this matrix rep-

in the SMC region in the Ks,kg) phase diagram. In this resents a full set of orthogonal vectors, i.e., they form a basis

case, for a suitable set of magnitudes of model parameter#) N-dimensional space. Therefore, it is possible to expand

the spin reorientation transitigf®RT) from an in-plane uni- the vector@ in eigenvectors,,

form magnetic structure to the SMC structure takes place. In

contrast, the finite thickness of a film supported on a non- 0=Ciay+Crapt -+ Cnay. ©)

magnetic substrate gives rise to a decrease in the SMC regi®yuation(2) may then be rewritten as

in the (ks,kg) phase diagram. In this case, for a suitable set

of magnitudes of model parameters, the SRT from a SMC

structure to the in-plane uniform magnetic structure takes

lace.

P In Sec. V we compare our results with the description of1€ré A is thenth eigenvalue of matri. In order to mini-

SMC obtained within the continuum approgchWe show ~Mize the energy defined by E(}) one must vary the coef-

that, from the viewpoint of theki,kg) phase diagram, re- f|g|ents ¢, that determine the ca_ntmg profile in ac_cordance

sults obtained within the continuum approach correspond tith Eq. (3). Therefore, for a given set of magnitudes of

ours in only a narrow range of model-parameter magnitudednodel parameters, Kg, J, andN, the minimal energy

A method for improvement on the continuum approachcorresponds to a certain magnetic structure in the surface

model is proposed. region. _From Eq(4) we find that-for o_n]y posmve signs of
We discuss the relevance of this model to real physica?""(:;1 eigenvalue\, the energy is minimized when every

systems. In particular, in Sec. VI we treat the case of 1.5¢n"=0. This corresponds t¢=0, i.e., a uniform magnetic

atomic-layer films of Fe on Gd that have been shown tgstructure with an in-plane orientation of each layer’s vector

demonstrate the SRT from the in-plane to SMC structure. Moment. However, if even ong, becomes negative, then
the condition@=0 does not correspond to an energy mini-

N
E:E0+§n‘, Aglcal?. (4)

| PHASE DIAGRAM FOR SURFACE MAGNETIC mum. In this case, a uniform magnetic structure with an in-

CANTING IN SEMI-INFINITE FERROMAGNET: plane orientation of each layer vector moment is not the

PERPENDICULAR SURFACE ANISOTROPY stable configuration. Hence, the criterion for SMC is that the
AND IN-PLANE BULK ANISOTROPY minimal eigenvalue of the matri& should be less than zero.

In order to express this criterion, first one needs to find
For a semi-infinite ferromagnet exhibiting a bulk in-plane this minimal eigenvalué\ ;;,, express it in terms of model
anisotropy, the appearance of SMC is marked by a smalbarameters, and then solve the inequatity,,<0. The equa-
deviation of the first few layer vector moments from thetion for eigenvalues of the matriX is expressed as

extkl2 -3 0 O 0O o
—% e\ _% 0 0
0 -3 & 3
defA— Al|=JNdet 0 0 -3 0 0] =o. (5)
en —3 O
0 0 ~% & -3
0 0 0 0 -1 g
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Here,e,=1+(Kg/J)—N=e—\, A=A/J, k=—1+2(Ks Because we consider here the semi-infinite crystal(8ds
—Kg)/J. The parametek characterizes the surface pertur- simplified as

bation that originates from both the absence of the outer
layer above the surface and the difference between the sur-
face,Kg, and bulk,Kg, anisotropy constants. Because we
consider the case of a semi-infinite crystdl-¢o0) in this
section, we neglect the surface perturbation at the other subince¢>0, Eq.(10) has a solution only fok<—1. In terms
face of a film, i.e., in the bottom right corner of the matrix of the model parameters, this inequality means tKat
the parameterk is set to zero. Equatiori5) can then be <Kg. This requirement is satisfied becausg<0 andKg

i sinho(N+1) B B 10
Imw—exq@)__K. (10

N— o0

written in the form >0. Equation(10) allows one to obtain the expression for
the eigenvalue in a closed form
k
dn+ Edel:O- (6) 1 1
)\:84‘5 K+; . (11)

Here,dy is the determinant of anNX N) matrix similar to

Eq. (5) but with all diagonal elements equal &q, i.e., k Finally, the inequality\ <0 may be written in terms of the
=0. For various values of, , the determinantdly can have ~model parameters. We find that the most convenient way to
various forms. Because the expression fef contains the do this is to use the reduced-anisotropy constakgs
reduced eigenvalue=A/J, the form of Eq.(6) depends on =2Ks/J andkg=2Kg/J. In terms ofks andkg, the crite-

the interval over which the eigenvalue is searched for. Thigion for SMC can be written exactly in closed form as
means that while searching for eigenvalues we must consider

all possible cases. ket 1< 1 (12)
kg—(ks—1)"
Case(i) |e,|<1. In this case the reduced eigenvalues be- 5o
long to a “band,” i.e., For —1<kg<0, the inequality of Eq(12) is satisfied for
kg smaller than some threshold magnitude determined by the
or equivalently, 1
Ks Kg kg<ks—1+ m (13
—=g—1s\sg+1=—+2. (79
J J For ks<—1 the inequality of Eq(12) is satisfied for any

Since we consider the case where the bulk-anisotropy corR0Sitive magnitude okg. This shows that the surface is
stant Kg favors in-plane magnetizatiorkz is positive. aways canted wherks<—1, independent of the bulk-
Therefore, none of the eigenvalues from the “band” crossanisotropy constant. This reflects the fact that SMC is driven
zero and this case can be ignored. by the relative strength dfs and the interlayer exchangé,

Caselii) £, < — 1. This inequality may be rewritten as The region corresponding to SMC in a semi-infinite ferro-
magnet exhibiting in-plane bulk anisotropy and perpendicu-

Kg lar surface anisotropy is shown in the left upper corner of the
2< +2=et 1<\ (7T (ks,kg) phase diagram presented in Fig. 2.
Thus, similar to casé), the eigenvalue will not cross zero Il. PHASE DIAGRAM FOR SURFACE MAGNETIC
and this case also can be discarded. CANTING IN A SEMI-INFINITE FERROMAGNET:
Case(iii) £,>+1. This inequality may be rewritten as IN-PLANE SURFACE ANISOTROPY
K AND PERPENDICULAR BULK ANISOTROPY
B

A<e—1= 3 (70) The generalization of this result for the case of surface

anisotropy favoring in-plane magnetization and bulk anisot-

Therefore, caseiii) is the only one that gives a negative ropy Ky that favors magnetization perpendicular to the sur-
eigenvaluex. In this case the determinady has the follow-  face (ks<0kg<0) is straightforward. In this case one must
ing form:’ revise the definition of SMC slightly because it corresponds
to a magnetic structure with the layer vector moments devi-
ated from the normal to the surface rather than from the
in-plane direction. In accordance with this new definition of

SMC it is more convenient to measure angles from the nor-

Substitution of Eq(8) into Eq.(6) gives rise to the following mal vector perpendicular to the surface. Thus we introduce

_sinh<p(N +1)

N™ 2N Sinh(p ) COShQDZS)\: O<(P (8)

equation for the minimal eigenvalue: anglesa,=w/2— 6, and expand the energy in E{l) to
_ second order of everw,. Then the expression for the re-
_ sinhg(N+1) ) duced eigenvaluk in Eq. (11) is valid. The difference is that
~ sinheN now the reduced surface perturbatierns determined by
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Therefore, the problem is reduced to a one-layer approach
and may be easily investigated analytically. Equati@n
then has the form

kp=2Kp/J bulk vector moment {=2,3,...) is oriented in-plane.
In-plane

E,;=—Jcosh;+Kgsir? 6.

Minimization of E; with respect to anglef,; gives the

solutions
sing;=0=6,=0
[@ and
J J
FIG. 2. Phase diagram for surface magnetic canting in the semi- CoSfic=— K:} O1c= arcco% - Z_KS)

infinite ferromagnet in coordinates of reduced-anisotropy constants
(ks,kg). The schematic representation of the model used for thel he difference between the energies corresponding to these
description of SMC/in-plane border and SMC/perpendicular bordesolutions is determined by the formula
is presented in two insets. The region corresponding to SMC in a
semi-infinite ferromagnet exhibiting in-plane, bulk anisotropy, and (J+2Kg)?
perpendicular surface anisotropy is shown in the left upper corner AE;=E1(601=601c) —E1(6,=0)= Ik
of the phase diagram. The SMC/in-plane border is described by the s
Eq. (13). The region corresponding to SMC in a semi-infinite fer- Since we present here the physical treatment of the case of
romagnet with perpendicular bulk anisotropy and in-plane surfacgerpendicular surface anisotropy considered in Sec. |, the
anisotropy is shown in the bottom right corner of ttg (kg) phase  anisotropy constankg is negative. Therefore, the energy
diagram. The SMC/perpendicular border is described by(Eg). difference AE; is also negative and the state with SMC is
always favorable. However, the deviation of the surface mo-

N 2(Ks—Kag) ment is determined by the formula cés=—J2Ks=

J ' —1Kks. Therefore, SMC may be realized only for those mag-
nitudes of kg that correspond to cag<l1, i.e., kg<—1.
Also, in this particular case, the susceptibilipy with re-
spect to perpendicular magnetic field may be calculated, and

K= —

As a consequence, in termslof andkg the criterion for the
appearance of SMC in the surface region of the bulk ferro
magnetic has the form

is given by
———<ks— 1. (14 T
kg—(kst1) X1 (ks>—1) 2kt 1)
The analysis of this inequality fdtz<0 andks>0 shows
the following. For G<kg<1, the inequality of Eq(14) is (ke< —1)= 1 (16)
satisfied wherkg is negative and larger than some threshold X1i%s 2(ksgt+1)kg(1—kg) "

magnitude determined by formula . -
It follows from these two formulas that in the vicinity of the

1 border between the canted and in-plane states of the surface,
ks+1+ ksT1< Kg . (19  both y,(ks<—1) and x,(ks>—1) diverge. In addition
x.(ks>—1)=2x, (ks<—1), demonstrating that the transi-
For ks>1, the inequality of Eq(13) is satisfied for arbi- tion from in-plane surface magnetization to canted is of sec-
trarily large negativekg . The region corresponding to SMC ond order. This applies to all of the borders in the phase
in a semi-infinite ferromagnet with perpendicular bulk an-diagram in Fig. 2. These results and the existence of regions
isotropy and in-plane surface anisotropy is shown in the botwhere the surface is always canted might be best understood
tom right corner of theKs,kg) phase diagram presented in in this limiting case because, fé&gz—, the orientation of
Fig. 2. The caseks,kg>0 andkg,kg<<O do not give rise to the surface vector moment is affected only by the exchange
any kind of SMC. interaction between the first and second layers and the sur-
Below we present the physical treatment of the phase diaface anisotropyKs. The rotation of the surface vector mo-

gram obtained. An important common feature of the twoment to 90° from an in-plane to out-of-plane orientation
parts of the phase diagram that exhibit SMC is the existencgives rise to an increase in the energy of exchange interac-
of regions that always have SMC independent of the bulkion of the surface moment with the subsurface one. On the
anisotropy determined by the inequaliys|>1. The exis- other hand, this rotation will give rise to an increase in the
tence of this region bordered in the left upper part of thesurface-anisotropy energy. If the latter is larger than the
phase diagram by the asymptdig= —1 may be best under- exchange-interaction energy then the surface-vector moment
stood within the limiting case dfg— . In this case, each will deviate from an in-plane orientation. The physical treat-
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ment of the region in the right bottom corner of the phase hy 20 4 ky=2Kp/)
diagram where the surface is always canted is similar.

Surface
lll. EFFECT OF EXTERNAL MAGNETIC FIELD ON THE Magnetic [@__.

PHASE DIAGRAM Canting

After establishing that equations of all lines in the mag-

ko 1 1+h,  k=2K/J
netic surface diagram can be obtained in closed form, Egs. 0 = T ——8
(12-(15), we now turn to the case with nonzero applied AN
magnetic field,h#0. In the case wher&s<0kg>0, ac- h=0 P\ | [ Surface
counting for an in-plane external magnetic fidldgives rise - P\ | Mognetic )\ —»
to an additional term in the energy [ Pepensiur | Canting

N 4A

E=—3> cod6,— 6,.,)+Kssir? 6, b,
n=1

FIG. 3. The evolution of SMC/in-plane border, EG93), in the
N N (ks,kg) phase diagram with an in-plane magnetic fie]ds shown
+KBE sir? 0n— E h, cosé,. (17) in the left upper corner of the phase diagram. The evolution of
n=2 n=1 SMCl/perpendicular border, EL9b), with perpendicular magnetic
In this case, the procedure for finding the minimal eigen-ield h, is shown in the bottom right corner of the phase diagram.
value is the same. This is due to the fact that mairhas the ~ The parameter&sg andksc, confine the intervals irks where
same form because the surface perturbatids the same. SMC is forbidden forkg=0.
Similarly, Eq.(12) for X is also valid. However, the param-
etere changes tae=1+kg/2+h/2. As a consequence, the tion of Eq. (5) for a finite number of atomic layers is of
criterion for uniform magnetic structure to be unstable has &pecial interest in thin-film magnetism. However, the neces-
different form, sity to account for a surface perturbation on each side of the
film brings additional complications. For the sake of simplic-
ity, we consider two extreme casé4) a thin film supported
on a magnetic substrate that has an extremely small depth of
SMC and(B) a thin film supported on nonmagnetic sub-

kst+1+h< (18

1
kg—(ks—1)
Analysis of this formula shows that includirtg leads to an = g ote
increase _Of the in-plane region in thies( kB)_phase diagram. Case(A). In this limiting case, Eq(9) is valid because the
The details of the movement of the SMC-in-plane border are,tace perturbation on the other plane of the film is already

as follows. First, the asymptote = —1 moves to the left -, a1 into account, i.ef,=0 for n>N (see Fig. 1 Then,

because it is determined by the formlg= —1—h;. Sec- ¢ right side of Eq(9) may be written as
ond, accounting for an in-plane magnetic field leads to the

existence of a finite interval iks where SMC is forbidden

for ky=0. Therefore, in this case, the SMC is suppressed and ___ Sinhe(N+1)
appears only ifkg exceeds some critical magnitude deter- o sinheN
mined by the formula
exp—2¢N)
hy+ JREF 2, RO TR O e —2eN)

The border between SMC and in-plane regionsHerO is
shown in the phase diagram of Fig. 3. Accounting for anOne can see from this formula that the correction to our
external magnetic field, perpendicular to the surface plane previous result, Eq(10), obtained for a semi-infinite crystal
for ks>0kg<0 leads to similar consequences in the bottomin the limit N— o decreases exponentially with the thickness
right part of the phase diagram, as shown. The expression f@f the film. What is more important is that this correction is
ksc, is determined by the formula positive in the interval & ¢<+. The latter gives rise to
the following consequence: Eq19) is satisfied with a
h,+vhi+4h, smaller mag?]itude ogfor any gigen value of the parameter
2 ‘ — . Bearing in mind the relation =& —coshf) [see defi-
nitions of parameters, ¢, , andg in Egs.(5) and(8)], one
IV THIN-EILM MAGNETISM may cc_)nclude that accon_mting for a finite num_ber of layers
gives rise to a decrease in the parameteand this, in turn,

In the case of a finite number of layefs, in a thin film  leads to an increase in the minimal eigenvalué\s a con-
one first must take into account the surface perturbation aequence) crosses zero later because in order to satisfy the
the other surface of a film in Eq5) and, second, solve the requirementA =0, one needs a larger surface anisotropy
resulting equation without the assumptibR-. The solu- compared to that of a semi-infinite crystal. Therefore, the

~exple) +[exp¢) —exp —¢)lexp—2¢N). (20
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r'y
a) //
-K o
//l e® Surface
I+I/N_ - Magnetic
I/ ¢ Canting
— ! ks =2Ky/J
0 (pN (poo - 1
Surface
Magnetic
b) vy Canting
>0
A_<0 \ 0
0__ O\ P- FIG. 5. Evolution of SMC/in-plane and SMC/perpendicular bor-
ders in the kg,kg) phase diagram with the increase in thickness of

a thin film supported on a hard magnetic substrata. Paiint the
FIG. 4. (a) Graphical solution of Eq(10) for the parameterp left upper corner of the phase diagram is located in an in-plane

corresponding to minimal eigenvalue of the ma#iin Eq. (5) for region for anN-layer film. However the poinA with the same
semi-infinite ferromagnefsolid line) and Eq.(20) for N-layer film coordinates Ks, kg) is located in the SMC region for an
supported on a hard magnetic subst(@@shed ling (b) Graphical ~ (N+1)-layer film. This illustrates the SRT from an in-plane uni-
illustration of the case when the criterion for SMC in a semi-infinite form magnetic structure of th&l-layer film to SMC in the N
ferromagnet is fulfilled X..<0), but inN-layer film with the same  +1)-layer film with the increase in thickness.
magnitudes of model parametieg, kg not fulfilled (O<\,). The

suppression of SMC in thin magnetic films is essentially a thin-film \/—27
effect because the additional effective in-plane anisotropy in an —4ks— 3+ V4kst 8kstS (22)
N-layer film exists exclusively due to the finite thickness of thin B 2(kst+1) '

film only. This effect cannot be assigned to either the surface-
anisotropy constant or the bulk one and thus needs to be account
for directly in the treatment of SRT in thin films supported on a hard
magnetic substrate.

?tdfollows from Eq. (22) that the evolution of the border is
the same, i.e., the SMC region continues its extension and
now the SMC/in-plane border crosses =0 axis atkg

1

appearance of SMC in a thin film supported on the hard 3

. ) ST A common feature of all the lines that determine the
magnetic substrate is suppressed. This situation is '”usnategMC/in-plane border in the phase diagram for thin films with
in Fig. 4.

: : : . N=1, 2, 3,... supported on a hard magnetic substrate is
Below we evaluate this solution for a few different film that each of these lines has an asymptotiat — 1. This

thicknesses\. . . ; ; .
N=1. In this case, the problem is restricted to the One_Ilne moves to the right side of the diagramMwcreases and

layer approach that was considered in Sec Il. Now, SMCf:rOSS’\T;tlhihaX'giA:C?_ at lTS: _blll\(lj (Flg._5)._(|jn the_'ltlr:ntlﬂn? b
must be treated as a deviation of the monolayer vector mo(_;qsed "h' eh in-p aneN or erEcomi!; esTvr\]/! a IO i
ment from the in-plane orientation. SMC takes placeKer tained within the assumptlol —e [ g- .( )]. This re_sut .
<—1 and thus the region of SMC coincides with the regionmay be treated as a qualitative description of a SRT in a thin

where the surface is always canted in the phase diagram g]lm as the thlckness Increases. Indee;d, Whllﬂdqyer f||m,
Fig. 2. For —1<ks<0, the monolayer vector moment is with surface-anisotropy constakg satisfying the inequality
always parallel to the s,urface 1/N<ks<1/(N+1) and smalkg, exhibits an in-plane ori-

N=2. In this case, the region of SMC is larger than thatSntation, the N+1) layer f|Im_ with the sameks gnd Kg
_ _ C _ exhibits SMC. Therefore, we find a SRT from an in-plane to
of N=1. If ks=~—1, then, similarly toN=1, SMC takes SMC with increasing thickness of the film deposited on a
magnetic substrate with an extremely small depth of SMC.
These trends may be understood in the following way.
The existence of an asymptoteka= —1 in each curve for
—2%ks—1 (21) N=1, 2, 3,... shows that the surface vector moment is
B kgtl always canted when the surface anisotropy exceeds the ex-
change interaction with the subsurface layer. In this case, the
The right side of Eq(21) is negative for—3<kgs<0, and canted state always exists. The increase in the rande, of
thus we may conclude that the rangekaf where SMC is  where canting is suppressed for ultrathin films is a conse-
suppressed becomes half as large as inNtkel case. quence of reduced thickness of a film, which is insufficient to
N=3. Similar to the casebl=1 andN=2, for ks<—1  support a SMC state that is suppressed in the hard magnetic
the SMC occurs whenevég>0. Forks>—1 the SMC oc- substrate, i.e., in the layers with layer indaxxN+1, N
curs only wherkg satisfies the inequality +2,....

place whenevekg>0, while for ks>—1 SMC occurs only
whenkg satisfies the inequality
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Case(B). To consider the case corresponding to a thin
magnetic film supported on a nonmagnetic substrate, one
must take into account the surface perturbaticat the other a)
surface of a film, i.e., one must substitute+ « instead of
g, in the bottom right corner of matriA in Eq. (5). The
equation for the eigenvalues can then be written in the form
" 9
2
K 1-2/(N-1
dN+KdN_1+ ZdN—ZZO' (23) =D
b
The substitution of the expression fdg determined by the A>0
Eq. (8), into Eq.(23) gives rise to the equation A<0
g SThN - sithe(N-1) N\ P !
Ksinhe(N+1) " sinhe(N+1) = (24) / 0 9
First, it follows from Eq.(24) that in the limiting caseN
—oo this equation is transformed exactly into E40) ob- FIG. 6. (a) Graphical solution of Eq(10) for the parametetp

tained above for a semi-infinite crystal with surface pertur-corresponding to minimal eigenvalue of the matiin Eg. (5) for
bation at only one surface of the crystal. Indeed, since in thg semi-infinite ferromagnesolid line) and Eq.(25) for an N-layer
limit N— oo the fraction in the second and in the last terms infilm supported on a nonmagnetic substratiashed ling (b)
Eqg. (10) transforms into exp{¢) and exp(-2¢), respec- Graphical illustration of the case when the criterion for SMC in a
tively, the Eq.(24) may be rewritten agl+ x exp(—¢)]>  semi-infinite ferromagnet is not fulfilled (O\..), but in anN-layer
=0. This is then equivalent to EL0). Therefore, we come film with the same magnitudes of model paramétgrkg fulfilled
to the natural result that the magnetic structure in the surfacé\n<0). The enhancement of SMC region in the phalsg,Kg)
region of a semi-infinite crystal is not affected by the bound-diagram for thin magnetic films supported on a nonmagnetic sub-
ary condition at the other surface of this Crystal_ Second, E$trate Compared to semi-infinite Crystal is essentially a thin-film
(24) is quadratic with respect to parameteand thus may be effect. The additional effective perpendicular anisotropy in such
solved analytically. The expression for the reodf Eq. (24) film exists exclusively because of the lack of inner layers exhibiting

corresponding to minimal eigenvalueis given by an in-plane amsotro_py due_to finite thickness of _thln film. This
effect cannot be assigned either to the surface-anisotropy constant

or to the bulk one and thus needs to be accounted for directly in the

nh
—k=exple)+|— ,—(P{1+exp:—(p(N—1)]} treatment of SRT in thin films supported on a nonmagnetic sub-
sinhg(N—1) strate.
~exp(¢)+[—2 sinhg exp — {N—1})]. (25

orientation of the vector moment of these films is totally
The rectangular brackets contain the correction to our previdetermined only by the sign of surface anisotropy constant
ous result, Eq(10), obtained for semi-infinite crystal in the Ks, i.e., itis parallel to the film plane wheiig>0 and it is
limit N—oo. As it follows from Eq.(25) this correction de- perpendicular to the film plane whe€s<0.

creases exponentially with the thickness of the film. More N=3. If ke<—1, SMC takes place whenevés>0,
importantly, this correction is negative in the intervak@  While for ks> —1 the SMC occurs only wheky satisfies the
<. This gives rise to the following consequence: Equationinequality

(25) is satisfied with a larger magnitude gffor any given

value of the parameter k. Therefore, one may conclude that kg< _ 2k5_
in contrast to the result obtained for thin films supported on kst1

a hard .magne.tic ;ubstrate, accounting for a finitg number the right side of Eq(26) is bigger than that of Eq13) and
®hus in this case, the region of SMC is larger that of a semi-

gives rise to an increase in th'e parameferAs a conse- infinite crystal. Similar to the case of the semi-infinite crys-
guence, the minimal eigenvalueis decreased anx crosses tal, the SMC/in-plane border goes through the origia
zero earlier compared to a semi-infinite crystal. In other_(’)k -0

NB— Y.

words, in order to satisfy the requiremext 0, one needs a N=4. Similar to the casdl=3, for ke< — 1 SMC occurs
heneverkg>0. Forks>—1 SMC takes place only ikg

smaller surface anisotropy compared to that of semi-infinit
atisfies the inequality

(26)

crystal. Therefore, SMC is enhanced in a thin film supporte
on a nonmagnetic substrate relative to a film on a hard mag-
netic substrate. This situation is illustrated in Fig. 6.

Below we evaluate this solution for a few different film kKe<—7——=
thicknesses\.
N=1,2. In these cases, the bulk layers are absent and thdde right side of Eq(27) is smaller than that of E¢(26)

the problem is ill defined because the concept of cantingbtained forN=3, but larger than that of Eq13), which
magnetic structure cannot be applied to these systems. Thketermines the SMC/in-plane border for a semi-infinite crys-

(27)
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moment is always canted when the surface anisotropy ex-
tkg=2Kp/J ceeds the exchange interaction with the subsurface layer. In
this case SMC always exists. The enhancement of the SMC
region for the thin film supported on a nonmagnetic substrate
compared to that of a semi-infinite crystal takes place due to

En-plane the lack of bulk layers that exhibit an in-plane anisotropy. On
the contrary, the decrease in the SMC region with the thick-
ks=2K/J ness takes place due to the increase in the number of inner
+1] i layers that exhibit an in-plane anisotropy and thus promote
Surface the in-plane orientation.
Perpendicular] Magnetic The generalization of this result for the case of bulk an-
N=4 Canting isotropy Kg that favors magnetization perpendicular to the

surface and the surface anisotropy favoring in-plane magne-
tization (kg<0, kg<0) is straightforward.

Computer simulations were run to verify these results. We
chose a number of atomic layeis, whose vector moments
) . . were allowed to deviate from the surface plane faqf

FI_G. 7. Evolution of SM_C/ln-pIang and SMC/perpendl_cuIar bor- <0kg<0 (from normal to the surface fdts>0kg<0) and
ders in the kg,kg) phase diagram with the increase in thickness Ofminimized the expression for the energy in H@). This

a thin film supported on a nonmagnetic substrate. Pintthe left rocedure allowed us to obtain numerical data for @jn(
upper corner of the phase diagram is located in the SMC region fo?n: 123 N). The number of atomic layers was then

an N-layer film. However, the poinf with the same coordinates o 3 . . .

(ks kg) is located in an in-plane region for al (- 1)-layer film. varied unt!l sin@y)<<10 °. These simulations confirmed that .

This illustrates the SRT from SMC in thélayer film to an in-plane t.he a_nalytlcal re.SUItS presented above are accurate. .ln addi-
uniform magnetic structure of theN( 1)-layer film with the in- tlon, it was confirmed that all borders that separate different

crease in thickness. regions in the phase diagram correspond to second-order
phase transitions. This result verifies that the expansion of
rjihe energy in Eq(1l) is appropriate with respect to small

variations ing, according to Eq(2).

tal. Therefore, in this case the SMC region is smaller tha
that of the cas®& = 3 but bigger than that of the semi-infinite
crystal. The SMC/in-plane border haska intercept at the

origin.
N=5. Similar to the caseBl=3 andN=4, for ke<—1 V. CONTINUUM APPROACH
SMC occurs whenevekg>0. Forkg>—1 the evolution of To date the problem of SMC of a semi-infinite ferromag-

the border is the same, i.e., the SMC region shrinks and thget has been considered only within a continuum
SMClin-plane border goes through the origin. The SMC re-approactt:® This approach disregards the layered nature of

gion is determined by the inequality the substance and reduces the problem to the solution of a
differential equation with a boundary condition at the surface
—3—2kg+ \/8k§+ 16ks+9 plane. This approach has a significant advantage because it
Kg< ket 1) : (28 allows one to get the dependence of the ariyten distance

from the surface analytically. Here we revisit this approach
and show that it is necessary to include higher-order effects
to match the exact, discrete solution. For the sake of simplic-
ity, we restrict ourselves to the consideration of the case of a
Lemi-infinite ferromagnet exhibiting in-plane anisotropy in
the bulk kg>0) and perpendicular anisotropy in the surface

gin ks=0kg=0 (Fig. 7). This line moves to the left in the - 4y | prief, the procedure for finding the canting pro-
(ks,kg) diagram asN increases. In the limiting cadg¢— 1£iles 9(2)) is the f(;IIOWirF:g. J 9P

tsr:aem?-x% Iirt]éplcinztglo r?-%sc?;nscdﬂe;xthn;tgat Sgt?r'gstdegoghe Minimization of the energy in Eq1) with respect to each
o ystal. . nay . %ngle 0,, forn=2,3,4 ..., gives rise to an infinite set of

gualitative description of a SRT in a thin film as the thick- similar equations

ness increases. Indeed, while lddayer film exhibits SMC, ’

the (N+1)-layer film with the samédg and kg exhibits an

in-plane orientation. Therefore, contrary to the result ob- ;¢

tained in cas€A) we find an inverse SRT from SMC to an YN —=Jsin(6,_1—6,)+Jsin(0,— 6,.1)+Kpsin26,=0.

in-plane orientation with increasing thickness of a thin film =" 29

supported on nonmagnetic substrate.

These results may be understood in the following way.
Similar to the case of a thin film supported on a hard mag-The equation obtained after the minimization of energy in
netic substrate, the existence of the asymptotesat—1 in Eq. (1) with respect to the angle, differs from Eq.(29) and
each curve foN=3,4,5... shows that the surface vector is given by

A common feature of all the lines that determine the
SMC/in-plane border in the phase diagram for thin films sup
ported on the nonmagnetic substrate is that each of the
lines has an asymptote kt=—1 and goes through the ori-
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Iy BEZKB/ J

JE , _ \
—=Jsin(6;— 6,) +Kgsinf 26,=0. (30) \
20, \

The essential feature of the continuum approach is that the C\anted
difference between the angles of adjacent layers is postulate'_ Magnetic ™
to be small, and thus the following approximations are as- Structure
sumed to be valid

On+1~ 0n+0r,1+%0;;1 SIN(0n41— 0n)~0ni1— On. -1 12 _(1) \\\\\
(31 / AN
) o +————| Perpendicular | [Canted |—»
This reduces the problem of the description of SMC to the j./ M;;::ﬁc
solution of a second-order differential equation // Structure
-4 \
1 \
0"(z)— Egsm 20(z)=0 (32 \
with the boundary condition at the surface plane FIG. 8. Magnetic phase diagram obtained heaid line), Egs.

(13) and (15). Magnetic phase diagram corresponding to the con-
Ks tinuum approach of Ref. 2dashed ling Eq. (35). The improved
0'(0)— Esin 260(0)=0. (33 continuum-approach magnetic phase diagram obtained by including
the second derivatives in the boundary condition according to Eq.
Here we have shifted the enumeration of the atomic layerd33) (dashed-dotted ling Eq. (41).
andn=1 corresponds ta= 0. The parametef introduced in
Eq. (32) is determined by the formula Kd= 2. also from Fig. 6 within the approach used in the present
The solution of Eq(32) has the form article for given bulk anisotropkg>0, the SMC appears for
smaller surface anisotropy compared to what the continuum
approach gives. The relative error is given by

0(z) B 0(0) Z 34
tan——=tan——ex Al (34)
10 _
and thus¢ is the effective depth of the canting profile. 2(Vkgt+ 4+ ‘/k—B) L 37
The boundary condition Eq33) gives The magnitude okg is small for metals such as Fe, Co, Ni.
J \/k— It may be estimated from the domain-wall thicknesge-
cosf(0)=— —=_ "B (35) causekg= 1/£2. According to Ref. 8¢ (in terms of lattice
(0) 2¢K k ; ;
¢Ks S parametersis 138, 36, and 285 for Fe, Co, and Ni, respec-

tively. For Fe, this formula gives a difference of 1.4%.
Therefore, the error determined by Eg6) is small for these
: ) ) . -~ "natural magnets. On the other hand, artificially created mul-
Fhe req‘.’”eme”ftcosa(g)'?l 'S sat|sf|ec_j. The_ solution of this tilayers demonstrate substantial variations in vector-moment
inequality giveskg<ks. Similar _conS|de_rat|02n of the case janation across the films on the atomic scale, and thus one
ks>0, kB<2O gives rise o the inequality-Ks<kg. Both  nay expect more substantial variations in the coordinates of
plotskg=ks andkg= —kg are presented in Fig. 8 by dashed the point ks,kg) in the phase diagram. We shall demon-
lines. It follows that this approximation of the continuum strate this in the next section.
approach does not imply the existence of regions where The discrepancies between our results and those obtained
SMC exists regardless of how large the in-plane bulkyith the continuum approach originate from an inconsistency
anisotropy constant is, which is a nonphysical result, as dein the form of the continuum approach used in Refs. 2 and 3.
scribed above. Indeed, in the phase diagram presented in Fighe problem is that while the differential equation of Eq.
8, the SMC region obtained within the continuum approach30) was obtained including the second derivative in Eq.
is restricted from above by the parabéig= k3 for any mag-  (31), the boundary condition of Eq33) implies that the
nitude ofks. second derivative is ignored. We believe that this is not ap-
To simplify the comparison of these results with ours, wepropriate in the vicinity of the surface, where the difference
expand the right side of the inequality in H4.3) exhibiting  between angles is larger than in the bulk. As a consequence,
our criterion for SMC in the vicinity oks=0. This expan- one must take the second-derivative term into account while

It follows from this formula that the SMC of a ferromag-
net exhibiting in-plane anisotropy in the bulk takes place if

sion gives rise to the formula treating the boundary condition at the surface plane.
s 3 4 s Accounting for the second derivative, E81), in the ex-
kg<kg—kgt+Kkg—kg+---. (36)  pansion of Eq(30) gives rise to another boundary condition

This result shows that the continuum approa&ia < ké) at the surface plane,

accounts for only the first term in E¢36) and thus is not 1 "
accurate. As a consequence, it leads to an overestimation of " / S _
) o = + - =0.
surface anisotropy. Indeed, as it follows from Eg6) and 2 6"(0)+6(0) 2 $in26(0)=0 (38)
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The intermediate solution of the differential equati@®)  the Fe vector moment to the canting state. The next step is an

may be written in the form irreversible first-order phase transition to another canting
state with a larger deviation of the Fe vector moment from

, . sinb(z) 39  thein-plane orientation. Later experimental investigations of

0'(2)=~ & (39 this system were performed using the magneto-optic Kerr

effect (MOKE).1° Because of its greater penetration depth,
the MOKE shows both the Fe and Gd film response, as op-
posed to the spin polarized electrons, which are sensitive
0" (2)= _125in 20(7). (40) only to the top surface layer. Results obtained by means of

2§ MOKE show unequivocally that the Gd atomic layers in the
. . . . . surface region take part in the SRT, and thus this system is a

Egéj?g?ﬂz(?g)sjtnd (40) being substituted in E(38) give realization of SMC structure.

As it follows from these experiments, the ground state at

Also, as it follows from Eq(32),

NS low temperature is an in-plane magnetic structure. The in-
cosf(0) = B (42) crease in temperature gives rise to a SRT from an in-plane to
kg —2ks SMC structure. Therefore, we must chodse<0 andKg

The analysis of this formula shows that accounting for the~ 0 and treat the SRT o_bserved_ W_ithin the Igft_upper part of
second derivative in the boundary condition E2g) leads to f[he phase d|_agram in Fig. 2. This is done within the follow-
the existence of a region in thied, kg) phase diagram where "9 assumptions. "
the surface is canted regardless of the magnitude, ofThe (1) Since the SRT takes place within a narrow temperature
SMCin-plane border is presented in Fig. 8 by a dashedi_nterval close to the Gd Curie temperature, 270-290 K, one
dotted line. As one can see from this picture, the result obMUSt assume that the Gd magnetizatidiyy and also its
tained is still not perfect because, according to @d), the ~ €@Sy-plane anisotropy energy strongly depend on tempera-
region where the surface is always canted takes place f%Poﬁ tand decrease to zero in the vicinity of the Gd Curie
ks<—3 rather thankg<—1. Also, the increase ifkg for . . . ' .
—1<ks<0 leads to a SRT from SMC to an in-plane struc- b(2) ?}ncg;hg C_urle_pgénzt of :Ee FFe f'lrmoot. K)t_lsJar
ture and then to another SRT from the in-plane structure gove the urie p_omi K), the € magnetization re
SMC. This again gives a nonphysical result. On the othefNd itS easy-axis anisotropy energy is assumed to be tem-
hand, Eq/(41) is more accurate than E¢B5) for small mag- perature independent in the narrow temperature interval
nitudés ofkg andks. 270-290 K. The energy of the Fe-Gd exchange interaction is
To summarize the results of this comparison, we conclud aken to go to zero In tTe V'ﬁ'mty gf the Gd Curie point
that the discrete method used here for constructing the phaQ€cause it is proportional to the proddiMgq. Here we

diagrams for SMC in semi-infinite magnets is more consis-d° Nt take polarization effects into account.

tent than the continuum approach. In contrast to the con- (3) S!nce 1.5-AL Fe/Gd IS a n_onumform_ system, we must
tinuum approach, this method allows one to consider thingeneralize the results_ obtamg:-d in the previous sections. First,
film magnetism and to describe the SRT from in-plane tothe Fe-Gd exchange 'm_eraCt'dFE-Gd'S assumed to be_ larger
SMC in ultrathin films supported on hard magnetic sub-than Gd-Gd exchange interactidgg.qq. And second, in the
strates and the inverse SRT in ultrathin films supported orfiCinity of the Gd Curie point, the Fe layer magnetization
non magnetic substratésee Sec. IY. We have to mention Mre iS assumed to be both much bigger than the Gd layer
that our computer simulations with artificially restricted MagnetizatiorM g4 and also independent of temperature. As
numbers of atomic layer@=1, 2, 3, 4 that are allowed to & consequence, the scalar surface perturbatiam Eq. (5)
deviate their vector moment from an in-plane orientationtr@nsforms into a matrix. The procedure for evaluating the
demonstrate that the canting profile through the thickness dFriterion for the nonstability pf the uniform in-plane structure
these ultrathin films is substantially nonuniform. Since the!S Similar to that presented in Sec. . o _
continuum approach cannot be applied to the treatment of. Within these three assumptions, the criterion for SMC is
thin-film magnetism, it is better to obtain canting profiles by 91\Ven by
direct minimization of the energy with the help of a com-

puter rather than using the continuum approach as was done kg< — kst 1 —2— (r~Lks 1, (42)
in Ref. 2. (y=1ks—1 kst1
where
VI. THE TREATMENT OF SRT OBSERVED
IN 1.5 ATOMIC LAYERS Fe /Gd WITHIN _ JrecMre _ 2KsMEe e 2Kg 43
THE DISCRETE APPROACH YT JoseMas S JreeMod’ B Joged

Recently we reported on the two-step SRT in 1.5 atomid-irst, it follows from Eq.(42) that if y is set to 1, then it
layers(AL) of Fe on Gd with temperature discovered with coincides with Eqg.(13), which was obtained with the as-
spin polarized secondary electron-emission spectrosttipy. sumption that the film is uniform. Second, since the increase
was shown that the first step in the SRT observed is #n temperature leads to the decreasévigf; to zero, accord-
second-order phase transition from an in-plane orientation ahg to Eq.(43), the magnitudes of the parameters 0 and
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ky=2Ky/J and the SMC/in-plane border move towards each other with
temperature. The point corresponding to the 1.5-AL Fe/Gd
will necessarily cross the in-plane/SMC border with tem-
perature and the system will undergo a SRT to the canted
state via a second-order phase transition, as observed experi-
mentally. The phase diagram generalized for the case of the

p— In-plane nonuniform system according to E¢42) is presented in

Magnt:c Flg 9. . . .

Canting —e g Thus we demonstrate, as it was mentioned in Sec. V, that
l 5o multilayer systems exhibit a more substantial variation in the
-1 0 reduced anisotropy coordinates, kg than uniform magnets

_ _ _ such as Fe, Co, and Ni. In particular, the reduced surface
FIG. 9. The part of magnetic phase diagram generalized for th%{nisotropyks can exist in the region wherks<—1, and

case of nonuniform films according to E(84). The increase in  g\ic exists regardless of how large the bulk reduced anisot-
temperature leads to the movement of the SMC/in-plane border tp

: : : . opy kg is.
the right side of the diagram shown by an arrow oriented to the Py Xe

. ! . The description of the first step of the SRT in 1.5-AL
right. The SMC/in-plane border is presented for two temperature?_.e/Gd presentped above may be CoFr)}Sidered only as a first step
T, andT,>T,. The point corresponding to 1.5-AL Fe/Gd moves .

with temperature to the lefshown by a single arrow oriented to the in the fuII_descrlptl_on of this Compllcated two-step SRT. The
left). The meeting of this point and the SMC/in-plane border signi-prOblem is that ,th's treatment |gn_ores the fact that the _S.RT
fies second-order SRT observed experimentally in Refs. 9 and 109bserv¢d experimentally is effectively a tW?'Step transition
consisting of a second-order phase transition and a subse-
ke<0 will approach positive and negative infinity, reSpeC_quent first-order trans_ition. _In order to degcribe a first-order
tively. The analysis of Eq(42) shows that fory>2 andks SRT,_one must consider higher-order amsotropy constants.
<0 the right side of Eq42) increases with temperature due Al this is beyond of the scope of the present article.
to the increase of the parameter As a consequence, the
SMCl/in-plane border moves to the right in the;(kg) phase
diagram. Also, the point in the in-plane region of the (kg) We thank NATO for support of this work under collabo-
phase diagram corresponding to 1.5-AL Fe/Gd at low temyative linkage Grant No. WPST.CLG.976845. A.P.P. also
perature moves to the left with temperature due to the inthanks NIST for continued support. We thank C. S. Arnold,
crease in the absolute value lkf<0. Therefore, this point P. Dowben, and M. Farle for useful discussions.
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