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We have calculated the initial magnetization curves and complete hysteresis loops for hard
type-II superconductors. The critical-current density /. is assumed to be a function of the
internal magnetic field H, according to Kim's model, J_ (H,) = k 7/ (H; + [H,}), where k and
H, are constants, As is the case for other critical-siate models, additional assumptions are that
bulk supercurrent densities are equal to J,, and that the lower critical field is zero. Cur analytic
solution is for an infinite orthorhombic specimen with finite rectangular cross section, 2a X 2b
{a<b}, in which a uniform field # is applied parallel to the infinite axis. Assuming equal flux
penetration from the sides, we reduced the two-dimensional problem to & one-dimensional
calculation. The calculated curves are functions of & /g, a dimensionless parameter

p = (2ka)''?/H,, and the maximum applied field &, . The fieid for full penetration is

H, =H,[(1 +p*)'* — 1]. A related parameter is H % = H,[(1 + 2p*)'/? — 1]. Hysteresis
lcops were calculated for the different ranges of H, K < H, H, <H <H% and HY <H,,.
The equations for an infinite cylindrical specimen of radius a are the same as those for a
specimen with square cross section, ¢ = &. In the imit p<€ 1 and g = b, cur results reduce to
those of the Bean model (J, independent of #,) for cylindrical geometry. Similarly, in the
Hmit p <1 and & o, the results are the same as those for a slab in the Bean model. For
H>1.5H,, or H>0 when p 1, the width of the hysteresis loop AM may be used to deduce J,

as a function of H: J_ (H) = AM(H)/[a{} — a/3b)].

L INTRODUCTION

To derive magnetic properties of hard type-Il supercon-
ductors, Bean'? and London® introduced what has come to
be known as the critical-state model.*’ The model assumes
that penetrated supercurrents flow with a density equal to
the critical-current density J,(H,}, where H, is the local
internal field. The flux vortex array is stable and there is no
flux creep. The lower critica! field is zero. In Bean’s model,
4. (H,;) was considered to be a constant independent of H,.
Since then, several different /. (H, )} functions have been pro-

posed. Kim, Hempstead, and Strnad®’ assumed that
JH) =k/(Hy+ [H ), (1)

where & and H,, are positive constants (Kim’s model ). Wat-

son® considered a simple linear function,
J(H)Y=4—~C|H], (2}

where 4 and C are positive constants (linear model). Irie
and Yamafuji’ and Green and Hlawiczka® proposed a
power-law model:

JAH) =k, |H, |9, (3)
where k, and g are positive constants. Fietz et ¢l.” and Kara-

sik, Vasil’ev, and Ershov'® proposed an exponential-law
model:

JAH) =4, exp(— |H,/C,), (4)

in which 4, and C, are positive constants.
In principile, the initial magnetization curve and hyster-
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esis loops of superconductors can be derived for every model
mentioned above. Kim ef al.® obtained two sections of the
high-field loop for cylinders. Hulbert'' solved for the initial
curve and high-field loop for cylinders. Fietz er al.® derived
the initial curve and high-field loop for an infinite slab using
the Kim model and a nonzero lower critical field. Watson®

- derived the initial curve for a cylindrical sample and calcu-

lated the loop for low fields. Irie and Yamafuji’ derived the
high-field loop for a slab. Ohmer and Heinrich'? and Wollan
and Ohmer'® derived the initial curve and the low-
medivm-, and high-field foops for a cylinder, for #, =0 in
Kim’s model, and ¢ = | in the power-law model. Karasik er
al.'® and Ravi Kumar and Chaddah'! gave analytic solu-
tions for the initial curves for cylinder and slab samples,
respectively, using the exponentiai-law model. The latter
also gave numerical solutions for the hysteresis loops.

In this paper we use Kim’s model to analytically derive
both the initial magnetization curve and the hysteresis loops
for an orthorhombic sample. The equations are somewhat
complicated because there are two constants in the expres-
sion for J,(H,) and the sample shape is not simple. The
loops may be of three types, depending on the value of the
maximum applied field. In addition, each curve has several
stages.

One of the motivations for using Kim’s model for the
derivation is that, of the models listed above, this one is quite
general. ¥t subsumes the iinear model when H;> H,, and
Bean’s model when both & and ¥, become infinite in such a
way that k /H, is a constant. It becomes a power-law model
for g = 1 if Hy = 0. A practical motivation is that, by using
Kim’s model, we can more accurately predict the magnetic
properties of superconductors for a realistic orthorhombic
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geometry. The physical significance of H, is discussed by
Hulbert. !

The paper is organized as follows. Section I gives the
general equation of magnetization for the orthorhombic ge-
ometry. Section I derives the magnetization as a function
of field for different field ranges. Expressions are obtained
for the initial curves and the hiysteresis loops. Section IV uses
the equations to generate hysteresis loops for several cases.
In Sec. V, the formulas are simplified for a general ortho-
rhombic Bean model. In Sec. V1, itis shown how J_ (&) may
be obtained from the width of the hysteresis loop.

B. GENERAL EXPRESSIONS FOR MAGNETIZATION
A. Orthorhombic geometry

We consider an infinitely long orthorhombic sample
with cross section 2aX 26 (bza}. The boundaries of the
sample are at x = +aand y = + & An external field H is
applied along the z axis. The configuration of the sample and
field direction are shown in Fig. 1(a). In this configuration,
the magnetic quantities have only z components, and the
supercurrents have only x and y components.

The critical-state model involves only macroscopic su-
percurrent, magnetization, fiux density, and field. The lower
critical field is assumed to be zero. The local internal field H,
is defined as

H, =B /u,, (5)

where # is the macroscopic local flux density and g, is per-
meability of free space. If H is the applied field and M, is the
iocal magnetization, that is, the field produced by bulk su-
percurrents, we have

M. =H —H. (6)

The total magnetization M is the average of M, over the
sampie cross section.

Sclutions for an infinitely wide slab or an infinitely long
cylinder involve only one variabie of integration. We have to
consider a two-dimensional problem for an orthorhombic
sample. Fortunately, this two-dimensional problem can be
simplified to a one-dimensional! calculation. Because the
sample is infinitely long and is located in a uniform H, both
K, and J, (H,) along the sample surface must be the same on
each side. Furthermore, the supercurrents penetrate the
same depth into the sampie from each side. The supercurrent
path is the rectangular circuit shown in Fig. i(a). For an
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FIG. 1. (a) Sample configuration. (b) Supercurrent path.
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infinitely long sample, the supercurrent density J, £, and
A, along a given circuit are uniform and are wriiten as func-
tions of x: J(x), H,(x}, and M, (x).

To obtain the total magnetization M, we have to inte-
grate M, (x) over the cross-sectional area. Because M is an
average over the sample and because of symmetry, it is suffi-
cient to take only the first quadrant {x > 0, y> 0) into consi-
deration. In this case the area 1s @b, and the differential area
element is (2x° + & — a)dx’, as shown in Fig. 1(b}. Thus,

M:-f_j (2% + b — )M, (x') dx’ . (7
ab s}

In this equation we use primes to denote the variable of inte-
gration. in the remainder of the paper, the primes are omit-
ted in the integrations.

B. Extension to cylinders and other geometries

Inthe imit b /a = 1, Eq. (7) for the average magnetiza-
tion applies to a specimen with square cross section:

i
M:%-{ xM. (x)dx. (7a)
a Jo

The same expression applies to an infinite cylindrical speci-
men of radius a, where the area is 7a° and the differential
area element is 277x dx. Consequently, when b is set equal to
a, the M(H) curves derived below are for either square
specimens, with cross section 2a X 24, or cylindrical speci-
mens, with radius a.'”

The principle of equal supercurrent penetration from
each side allows us to extend these arguments to samples
with cross sections in the shape of triangles and polygons.
The only requirement is that all sides are tangent to a circle
of radius a. A technologically useful example is a regular
hexagon.

HE DERIVATION OF #(#) FROM J(x)
A. General expression for Jx)
To obtain M we have to first derive the supercurrent

density J(x). Using Ampere’s law and Eq. (1), we have

dH,
—L = —sgn(NJ(H,) =
dx

—sgn{J)k
H,+sgn(H YA, '

(8)

where sgn is the sign function, equal to + 1. From Eq. (8},
f [H, + sgn(H ) H, [dH, = — J sgn(Nkdx. (9)
Alfter integration, the solution for the guadraticin H,, in a

region where A, and J do not change their signs, is

H, = —sgn(H)H,+ [H} — sgn(JH ) 2k{x + ) ]'"?,

(10)
where ¢ is an integration constant to be determined by the
boundary conditions. Multiplying Eq. (10) by sgn(H,), we
obtain

Hy+sgn(H )Y H,

= +sgn(H,)[Hi—sgn(JH)2k(x + )}V, (1D
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Weset + sgn{H,) = 1 ontheright-hand side because, from
Eq. (1}, the left-hand side is always positive. Using Egs. (1)
and (11) we obtain

J(x} =sgn(NJ (H;) = sgn{Nk /[ H, + sgn(H, ) H,}
=sgn{N)k/[H} — sgn(JH ) 2k(x + )}, (12)

This is the general expression for J(x).

8. initial MM curve and fuli-penetration fleld
1. Current densities and locai fields

We start from the initial state, H = M = 0, and increase
H in the z direction. According to Lenz’s law, the supercur-
rent J (of negative sign) will penetrate from the surface
{x = a) inward. If the supercurrent penetrates until x = x,,
H, in the sample will be / at x = a, decrease to 0 at x = x,,
and remain O for x < x,. Figures 2{a) and 2(b) show the
J{x) and H,(x) functions, represented schematically by
straight-line segments. If H increases further, x, decreases.
When x, =0, the sample is completely penetrated [Figs.
2(c) and 2(d)]. The corresponding field is called the full-
penetration field #,. In the complete penetration state, J(x)
and H,(x) have similar forms, shown in Figs. Z(e) and 2({).

For the initial magnetization curve, where the field is
first applied to the sample, we will denote J(x) as Jy(x}. We
derive the supercurrent density J,(x) for x, <x<a. The
boundary condition is

Jolay= —J. (Hy.
Substituting Egs. (1) and (12) into Eq. (13), we have

(13)

[H:+2k(a+)|'*=H,+H, (14)
from which
Phe = (H,+ H)’ — H2 — 2ka . (15)
Substituting Eqg. (15) into Bq. {12}, we obtain
Joix)= —k/U(Hy+ H)? —2kla—x)1"? (xo<x<a).
(16}

We consider the magnetization for two stages:
C<H<H, (stage ) and H, < H (stage I).

i i) J§
OTTX i d : ’ _‘T_bx
e
3 szo r %
{a) {c} {e)
H; H, H;
H>Hp}-~-7
H<H, | Feter {/ :
<Hpl--x & !
Y ‘%@‘{"x Y Z—’;{’x Oi"é_* X
{b} {d) {f)

FIG. 2. Schematic supercurrent density J and local internal field o, as
funictions of x for the initial magnetizing process. For purposes of illustra-
tion, Jand M, are sketched as straight line segments.
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2 Stage | (O<H<H,}

In this range, x, decreases from @ to 0, and

Hi{x)=0 (B<x<xy), (17a)

H (x) =H+f Jix)dx (xz<x<a). (176}
From Egs. (17a), (17b), and (6) we obtain

Mix)=—H {O<x<x), (18a)

M. (x) :f Jlxydx {(xy<x<a). (18b)
From Egs. {17b) and (16), x, is determined:

xo=a— {(H,+HY ~H{}/k, (19}
using the boundary condition

H (x,)=0. (20)

Substituting Eqs. (18a), (18b), and (16) into Eq. (7), and
using Eq. (19), we obtain the final resuit:

M(Hy = — Hx,(b—a+ x;)/ab
— S8,(b + x5} (@ — x,)/ab
+ (8]~ H)O, + 2H j{a — x,)/5kab
O<H<H,Y, (21

where
Sl:Hl)+H9 (zza)
Q= [5k{a+b) —257]/15abk* . {22b)
For the case @ = b, applicable to cylinders of radius a,
Eqg. (21) reduces to Hulbert’s Eq. (10d), with appropriate
symbol substitutions of & for 8" In the limit b— o, for

infinite slabs of thickness 24, Eq. (21) reduces to the sotu-
tion of Fietz ef al., Eq. {(b) in Table I of Ref. 9.

3. Fuil-peneiration field 4,

When x, in Eq. (19) becomes 0, the sample is complete-
ly penetrated [Figs. 2(c) and 2(d) 1. Setting x, = 0 so that,
by definition, H = #, in Eq. (19}, we obtain

H,=(H} +2%ka)'* - H,. (23)

4. Stage #i (K, <H)

In this range [Figs. 2(e} and 2(f}}, Egs. (7}, (16},
(17b), and (18b) are still valid with x, replaced by 8. The
final result is

M(H)= —58,+ (87 —R)Q +2R}/5kb

(H,<H<H,), (24)
where

R = (S} —2ka)"*. (25)

C. Hysteresis icops for the low-#,, case (4, <#,)

To obtain hysteresis loops we have to derive reverse
M(H) curves from a given maximum field /,, on the initial
curve. The reverse M(H) curve starts from (H,,,M )} and
ends at { — H,,, — M, ), forming the descending branch of
the hysteresis loop. The ascending branch will then be
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— M( — H). The equations governing the shape of the hys-

teresis loops depend on H,,. The first case is for H,, < H,,
where the specimen is never fully penetrated. The second
case is for H* < H,, when the reverse supercurrent pene-
trates to the center of the specimen before & is cycled back to
zero. (The expression for H % is derived in Sec. [l D 2.)
The third case is intermediate, H, < H, <H %,

1. Current densities and local fields

The low-H,, reverse M{ H) curve starts from a point on
stage I of the initial curve, H <H,. Figures 3(a)-3(j)
show the J(x) and H,(x) functions developing with de-
creasing H. Figures 3(a) and 3(b), similar to Figs. 2(a} and
2(b), correspond to the starting point with # = H, and a
negative supercurrent penetrating to x,, . When H decreases
from A, , the induced supercurrent with positive J will pene-
trate from the sample surface to x = x,, and the correspond-
ing J(x) and H,(x) are shown in Figs. 3(c) and 3(d}. At
this point, J(x} for x,, <x <x, [dencted asJ,,, (x) ] remains
the same as the J,(x) for the initial magnetization when
H=H, . J(x)isJJ(x) for x; <x <a. This arrangement is
maintained until H = 0, as shown in Fig. 3(e) and 3(f).
Further decreasing / to a negative value complicates the
situation. As shown in Figs. 3(g) and 3(h), the expression
for J{x) has tobe divided into three parts: J,, (x),J/,{x), and
Ji{x), and the corresponding &, changes sign at x = x,.
This situation lasts until # = — H,, when both J,, and J,
are removed. Figures 3(i) and 3(j) show J{x} and H, (x) for

J J J! J1 J]
Xm 8 Xm |8 *m] |8
o 2, o le x o mxﬂ x
T T I
(2) (e} (e}
H; H; Hy
Hm F=A % Xy
Oz 5"x 0w x Orziarx
I
(b) {d) ()
L kL i I
% ’,‘3 i
0 B‘aa X O % a X
¥in
(g} ()
H; My
o ¥m Xy 0 ¥m a
E2A N S T 7 x
(h) )

FIG. 3. Schematic supercurrent density and local internal field as functions
of x for the reverse magnetizing process from H, < H,.
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H= —~ H,,; they are opposite to the case shown in Figs.
3(a) and 3(b).

We give the expressions for J,, (x), J;{x), J,{x), and
Jy(x). Because J,, (x} =Jo(x) when H =H, , we obtain
from Eq. (16):

(%) = ~k/{(Hy+ H, ) —2kia —x)]'"

{x, <x<x(). (26)
The boundary condition for J,(x) is
Ji{ay =J . (H). (27)

Substituting Eqgs. (1) and (12) into Eq. (27} we have

[H} —2k(a+o)}'P=H,+ H, (28)
from which
2ke= — (Hy+ H)’ + H} — 2ka. (29)
Substituting Eq. (29} into Eqg. (11} we obtain
F ) =k/[(Hy+ B+ 2kla -] (xy<x<a).
(30)
The boundary conditions for J,(x) and J,(x) are
Iy (x5} =J (Q) (31a)
and
J{a)y=J.(H). (31b)
By a similar derivation, we obtain
S(xy=k/[H} +2k(x; —x) ] (rp<x<xy)  (32a)
and
F(x)y =k/{{Hy— H)? —2k(a—x)]"* (x;<x<a).
(32b)

The magnetization process can be divided into two
stages. Stage [ corresponds to G « H « H, and stage 11 cor-
responds to — H,, < H <0.

2. Slage f (0<H<H )}
Instage [, H,{x) is

Hx)=0 (0O<x<x,}, (33a)

Hix)=H, +J F(x)ydx {(x,<x<x,}, (33b)

i

Hi(x)=H+fJ,(x}dx {(x,<x<a).

X

(33¢c)

From Egs. (33a), (33b), and (33c¢) and Eqg. (6}, M, (x) is
cbtained as

M (x)= —H (O<x<x,), (34a)

Mi{x)y=H, ——H+j J.(x)dx (x,<x<x), (34b)

M, (x) :f f(xydx (x,<x<a). (34¢)

x,, can be determined By replacing H in Eq. (19) with H
Xp=a— [(Hy+H,) —H /2. (35a}

Using the continuity of A, at x = x,, and {from Egs. {33b)
and (33c), we obtain

D. -X. Chen and R. B. Goldfarb
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x,=a— [(Ho+ H,)" — (Hy+ H)*}/4k . (35b)

Substituting Eqgs. (34a), (34b), (34c), (26}, and (30) into
Eq. {(7), and using x,, and x, defined by Egs. (35a) and
(35b) we obtain the final result:

M{Hy= — Hx, (b—a+x,)/ab
— 8 fab+ (a —b)x,, —x,|/ab
— (ST =R+ (R —HHQ,
+2[(x, —a)R3 + (%, — x,,,)H | /5kab

O<H<H,), (36)

where

SS=H,+H,,, (37a)

Ry =[S} +2k(a—x)]'", (37b)

0, = [S5kia+b) +2531/15abk?, {37¢)

@, = [10k(a + b) + 357 — 783 1/30abk” . (37d)
3 Stage li{~H, <H<0}

In stage [f, H (x) and M, (x) are
Hx)=0 (b<x<x,), (38a)
Hixy=H, +Jr J.(xYdx (x,<x<x,), {38b)

Hi(x):H%—j‘ Jz(x)dx+J J(xdx  (xy<x<xy),

{38¢c)
H.(x)= H—%—Jﬁ F(x)dx {(x;<x<a}, (384d)
and
Mix)y=—H Q<x<«x,), (392)

Mix)=H, ~H+f T.xdx (%, <x<x), (395)

Far e

M, (x) =}

X

‘Jz(x)dx -+f Ji(xydx (x,<x<x3),
{39¢)

M. (x) zJ‘ Ji(x)dx (x,<x<a). {39d)

x,, 18 given in Eq. (35a), and x; and x, can be derived using
the continuity conditions &t x = x, and x, from Egs. (38d),
(38¢), and (38b):

xy=a— [(H,— H) - H}]/2k, (40a)

Xy =4 — {(HG"“H)2+ (H0+Hrn)2"'2}{(2!]/4k
{40b)

The final result is obtained in the standard way used above:
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M(H)Y =
— Hx, (b—a+x,)/ab+ S;(a—x;3(&+x,)/ab
—=S1{x~ %) 206 —a+x;) + x4+ x,}/ab
~ (S —HDQ+ R —HI)NDs + Qo)
+2{(xy — @)H 3 — (x; — x,) (R} — H})/5kab

(—H,<H<®), (41)
where
S;=H,-H, (42a)
Ry=[HJ + 2k({x, — x,)}'7, (42b)
@y = [Skia+b) — 25} /15abk?, (42¢)
Qs = [Sk(a +b) — 552 + TH2]/15abk? (424)
Oy = [10k(a + b) — 35 —7S? + 6H2]/30abk > . (42¢)

D. Hysteresis loops for the high-#H,, case (H*, <H,,)
7. Current densities and local fields

For H,, > H, we have to consider two cases. In the high-
H,, case, the reverse supercurrent completely penetrates to
the sample center before H has decreased to 0. This corre-
sponds to H,, > H* = (H} + 4ka)"'? — H, as shown be-
low. The second case is for medium #,,, where the reverse
supercurrent is not completely penetrated when A = 0. This
will be discussed in Sec. IIf E.

J{x} and H,(x) for the high-H, case are shown in Figs.
4(a)}—4{n). Figures 4{a) and 4(b) correspond to the start-
ing point when = ¥, and the sample is completely pene-
trated by negative supercurrent with density J,,(x). De-
creasing H from H,, induces a positive supercurrent with
density J,(x). As can be seen in Figs. 4(c) and 4(d), the
reverse positive supercurrent peneiraies to x = x,, at which
point H = H,,, the full reverse penetration fieid for the
high-H,, case, defined below. This is stage f.

Stage Il starts when x, becomes 0, shown in Figs. 4(e)
and 4(f), and ends when H reaches 0, shown in Figs. 4(g)
and 4(h). After that comes stage 111, in which the local in-
ternal fields at the center and the surface of the sample have
different signs, corresponding to different functions for
JH(x) and J4(x), bounded by x = x,, where H, = 0. This
situation is shown in Figs. 4(1) and 4(j). Further decreasing
H results in the situation of Figs. 4(k) and 4(1), when the
whole sample has negative H,, and the magnetization pro-
cess enters stage [V, In stage IV, J(x) keeps the form of
Ji(x) untit # = — H,,, when the process ends. The final
J{x} and H,{x} are shown in Figs. 4(m) and 4(n).

The expressions for J,, (x), J,(x), J5,(x), and J,{x)
have already been given in Eqgs. (26}, (30}, (32a), and
(32b), and we need only change the regions of x, referring to
the figures as described above.

2. Stage i {H,,, <H<H,}
Instage I, H,{x) and M, (x) are

H (xy=H, +j< J.(xydx (D<x<x), {432)
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FIG. 4 Same as Fig. 3, from X, > H ¥

m me

H,-(X):H+J J(x)dx (x;<x<a}, (430}

and

M (xy=H, —H +f J. (xydx (D<x<xy),

x

(44a)

M, (x) =f Ji(xydx (x,<x<a). (44b)

x, is given in Eq. (35b), and the final result is
M(H)= —8,—(S] —RHG+(R] —RDHQ,
+2{(x, —a@)R ] + xR ;]/5kab
(H,,<H<H,), (45)
in which
R, = (83 —2ka)'"?, (46}

and H,,, is the reverse full-penetration field for the high-#,,
case. It can be determined by taking x; = 0 n Eq. (35b):

H,, = [(Hy+ H,)* — 4ka]'? — H,. (47)

The boundary between the high- and medium-H,,, case can
also be determined from Eq. {35b) by taking x, =0 and
H=0
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H* = (H? + 4ka)'* — H, . (48)
In the limit #— o, Eq. (45) reduces to Eq. (d) in

Table I, Ref 9, with the typographic correction
“...{(\,@/2)[,.. + 2B§]3/2...,}.”
3. Stage fi (O<H<H,.,)}
In stage I, the H,{x) and M, (x) are
Hi(x)zH-i—j Ji{xydx (O<x<a), (49)
M, (x) :J Ji(x)dx (O<x<a). (50)

x, is given in Eq. (35b), and the final result is
M{H)= —8, — (8} —R3)Q,—2R:/5kb
(C<H<H,,), (51)
where
Ry = (8% + 2ka)'/?. (52}

For the case g = b, applicable to cylinders of radius a,
Ea. (51) reduces to Kim’s solution for M{(#) in the first
quadrant, Bqg. (14) in Ref. 5, and to Hulbert’s solution, Eq.
(10b) in Ref. 11. In the limit b— «, for infinite slabs of
thickness 2a, Eq. {51) reduces to the solution of Fietz ef al,,
Eq. (e) in Table I of Ref. 9.

4. Gtage Wl {—H, <H <0}
In stage IIL, the H,(x) and M, (x) are

H (x) =H+f ‘Jz(x)dx + | L(xidx (C<x<xy),
(53a)
H'(X):H+j J;;(x)dx (x3<x<a), (53h)

and

M. (x) =f sz(x)dx—i—J‘ J{x)dx (O<x<x3), (54a)

M, (x) =J S(x)dx (x,<x<a).

X

{(54b}

x5 is given in Eq. (40a); and the final result is

MHY = 5;(a — %3} (b + x3)/ab — 8 x,(6 — a + x3)/ad
—(S1—H)Q— (H; ~RHQs
—2{(a~x)H} + xR }/5kab
(—~H,<H<0), (35}

where

Ry = (H2 + 2kx;)"?. (56)

The lower & boundary in this stageis — H »» @8 can be seen

by taking x, = 0in Eq. (40a). For the case 2 = b, applicable

to cylinders of radius ¢, Eq. {35) reduces to Hulbert’s Eq.

{10¢), with appropriate symbol substitutions of # for B." In

the limit 56— 0, Eq. (55) reduces to Eq. (g) in Table I, Ref.
9, with the typographic correction

“ Bk H ) + ol — (B H)2 + 12— 3
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5. Stage IV (—H,,<H<—H,}
In stage 1V, the H,(x) and M, (x) are

H,(x) =H+f Six)dx (O<x<a}, (57)
M,(x) :f Iix)dx (O<x<a), (58)
and the final result is
M(H)=58,— (S} —R3)0,— 2R3/5kb
(—H,<H< —~H,), (59)
where
R,= (5% —2ka)"'?. (60)

To generate the complete hysteresis loop, stages I-IV
are reflected about the origin onto the third and fourth quad-
rants, as indicated at the beginning of Sec. 11f C. For exam-
ple, Eq. (59) in the second guadrant becomes

MH)= —8,+ (87 —RQ, + 2R3 /5kb

(H,<H<H,} (59a)
in the fourth quadrant, in which 7 and M (H) are replaced
by — H and — M(H). Eqguation (5%2) is the same as Eq.
(24) for stage II of the initial curve. For the case a = b,
applicable to cylinders of radius a, Eq. {59a) reduces to
Kim’s solution for M(H) in the fourth quadrant, Eq. (14} in
Ref. 5, and to Hulbert’s solution, Eqg. (10a) in Ref. 11. In the
limit b— o, for infinite slabs of thickness 2a, Eq. (5%a) re-
duces to the solution of Fietz ez al,, Eq. {¢) in Table  of
Ref. 9.

E. Hysteresis loops for the medium-#,, cass
{H, <H, <H)

i. Current densities and focal fislds

For the medium-H,, case, the reverse magnetization
process is shown in Figs. 5(a)-5{n}. The difference between
Figs. 5(a)~5(n)} and Figs. 4{a)~4(n) is only for stage [1. At
theend of stage I [ Figs. 5{e) and 5(f) ], H =0, but x, is stili
greater than 0. Therefore, in stage II, when H <0, J(x) has
io be divided into three parts: J, (x), J,(x), and J5(x)},
shown in Figs. 5(g) and 5(h}. The next stage starts from the
point where x, = 0, as shown in Figs. 5(i) and 5(j}. The
expressions for J(x) are the same as in the high-H,, case.

i1}

2 Stage [ {O<H<H,,)

This stage is the same as for the high-H ,, case except for
the field interval, which is from #,, tc 0 here.

3. Stage H (H,,,, <H< 0}
In stage {1, H,(x) and M(x) are

H(x}=H, +)( Fa(xydx (O<x<x;), (6la)
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(i) {k} (m}
Hi H; Hy

(3 (13

FIG. 5. Same as Fig. 3, from /&, between H, and H 5.

H.(x) :H+f}.fz(x)dx+f F(x¥dx  (x,<x<x3),
(61b)
H.(x) =H+f Ji(xydx (xy<x<a), (6lc)

and

Mixy=H, —-H—Q-I J.(xydx (D<x<x), (62a)

X

M (x) :Jp ' Jy(x)ydx +=f S(xydx  (x,<x<x;),(62b)

M, (x) =f Ji{xydx (xs<x<a). (62¢)

x, and x, are given in Egs. (40b) and (40a), and the final
result is
M(H)
= 85(@ — X3} (b6 + x3)/ab — 8, [x] + (6 —a)x,]/ab
— (5] —H)Q — (H; —R)HG+ (R3 —RDGs
—2[{a — %) H] + (%3 — %,)R ] — x,R | }/5kab
(H,,<H<0), {63)
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where H,,,, is the reverse fuil-penetration field for the medi-
um-#,, case, which can be determined by taking x, =0 in
Eq. (40b):

= Hy— [4ha + 203 — o+ H, )] 2

prm

(64)

4. Slage Wl {—~H, <H<H, .}
This stage is the same as the high-H,, case except for the
interval of A, which is here from H,,,, to — .

Brm

5. Stage iV{—-H, <H<~H,)}
This stage is the same as the high-f{,, case.

I¥. COMPUTED M{#H) CURVES

We have analytically verified, for each case in Sec. 11,
that the stages are continuous at their end points. To illus-
trate the formulas in Sec. I1I, we give some computed A (H)
curves. To reduce the number of variables, we define 2 new
parameter, similar tc one used by Kim’:

p= (2ka)'"*/H,. (65)
Equations {23) and (48) can be rewritten as

H, = H[(14+p)"* — 1], (66)

HY =Hy[(1+2p")"7—1}. (67)

The shapes of the M H) curves are now determined by p
and b /a. Figures 6(a)-6(e) give the initial and hysteresis
MH) corves for b/a = 1 and p=0.3, 1, 3, 10, and 1000.
For each case, five M (H} loops are drawn for #,, = H,/2,
H, (H,+H%)/2, HY,, and 4H,. The curves in Figs. 7(a)
and 7(b) give the initial and hysteresis M (H) curves for
p=1,H, =H}% and4H, andb /a = 1 (smallest}, 1.5,2, 5,
and 100 (largest). For all the curves, M and H are normal-
ized to .

We can observe from Figs. 6(a)-6{e} that the M(H)
curves derived from Kim’s model have a wide variety. The
curves shown in Fig. 6(a) are very similar to those derived
from Bean’s model.? If p were smaller than 0.1, there would
be virtuaily no difference between Xim’s and Bean’s models.
Figure 6(e) for p = 1000 is almost the same as for the limit-
ing case p— oo, where Kim’s model reduces to
J(H)=k/H,.

The initial curves have minima except when p = 0. We
can see from Figs. 6(a)-6(e) that, with increasing p, the
field where the minimum is located decreases from H, to
0.56 H,, and the minimum M decreases from — 0.33 &, to

— 0.36 H,. The initial sicpes of the initial curves are — 1.
For p = 1000, the initial curve is linear within 1% up to 0.09
H,, despite the assumption of zero lower critical field in the
derivation. This linear region does not come from a3 Meissner
state, but is simply a reflection of a large J,, at low H.

The initial reverse slopes at the corners of the hysteresis
focps in Figs. 6(a)-6(e) arealso — !. This is a consequence
of shielding by surface supercurrent at the beginning of stage
I. Because J, is lower, this 19 linear region is smaller.

The second and the fourth loops correspond to the two
boundaries between the low-, medinm-, and high-#,, cases.
We can see from Figs. 6(a)-6(e) that, for the medium- and
high-H, cases, the initial and the hysteresis curves merge
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FIG. 6. Theoretical M-H curves, scaled by H,, for a sample with b/a = 1,
for p==(a) 0.3, (b} 1, (¢) 3, (d) 10, and (e} 1000. In cach figure, loops are
shown for H, /H, = 0.5 (smallest), 1, + H%/2H ,H¥ /I, and 4 (lar-
gest).
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FIG. 7. Theoretical M-H curves, scaled by H,, for p==1 and (a)

H, = H%, (b) H, = 4H,. In cach figure, cusves are shown for samples

with aspect ratio & /a == 1 (smallest), 1.5, 2, 5, and 100 (largest).

when H>H,. The middle parts, arcund H = 0, are the same
for all the loops in the high-H,, case.

With increasing b /a, the width of the normalized hys-
teresis loop increases asymptotically, as seen in Figs. 7(a)
and 7(b). One interesting feature in Figs. 7{a) and 7(b) is
that, for each figure, the loops with the same p and H,, cross
at two points. This crossover effect is general for H, > H,.
For H, = H} thecrossing pointsareat H = + H_, butfor
higher /. the points are at higher fields. For a set of samples
with the same ¢ and different b, when H=H,,, H.(1)
should be the same for 2l the sampiles, because #, is a func-
tion only of x. When ¥ is reduced from this H,, to a value
H_, that equals this H,(0), x, will become a/2. Changing
the variable in Eq. (7) such that £ = x — a/2, we have

1 + a/2
M, =— (264 0)M, (&) dE . (68)
(Zb eal?
Because M, (£) is an even function of £, Eq. (68) can be
written as

1 - a/2
My, = f MA(E) dE, (69)
a

-~ a/2
independent of b. Since both H,, and M, are independent
of b for constant g, the point (H_,,,.8 ., ) must be a crossing
point, as iliustrated in Figs. 7(a) and 7(b).

¥. M+ FORMULAS FOR ORTHOHOMBIC SAMPLES IN
THE BEAN LIMIT

Bean derived the M(H) formulas for cylindrical and
infinite-slab samples for J, independent of A, In this paper,
we have obtained the M (H) formulas for the orthorhombic
geometry using Kim's model for 7, Eq. (1). In this section,
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we reduce the orthorhombic Kim formulas to general ortho-
rhombic Bean formuias. Finally, we reduce these to the sim-
ple cylinder and slab forms.

A. Bear’s model for orthorhombic samples
Bean’s model can be written as
Ja(Hi) :ja? > (70)

where J, is constant. To modify Kim’s model, Eq. (1}, for
the Bean limit, let

k——)oo , (713)
Hy— o0, {71%)
k/H =1, . (7ic)

Ali the formulas for Kim’s model can be reduced to the
corresponding ones for Bean’s model. For some cases, name-
iy Egs. (74), (75b), {77a), and (77b) below, it was neces-
sary to use binomial expansions before taking the limits in
Egs. (71a), (71b), and (71c). For the terms raised to the
power 3/21in Egs. (24), (45), and (51), expansions has to be
carried to third order.

The general expression for the supercurrent density can
be obtained from Eg. (12):

FJ(x) =sgn(f)J, . (72)
For each specific case we have

Jy=d, = —J, (73a}
and

JS=LL=0L=J. {73b)

We do not have to identify J,, J,, and J, because we do not
need to separate J(x) into several sections, since J, is con-
stant. For the same reason, for every M (/) curve, only one
or two stages have to be considered, and for the reverse
curves, only two cases have to be considered.

The fuil-penetration field can be obtained from Eq. (23)
as

H, =J.a. (74)

The initial M(H) curve can be derived from Eqgs. (21) and
(24) as

MHy= —H+ (H/2},)(V/a+ V/b)y — H>/(3J lab)
(O<H<H,), (75a)
MH)= —J.aly —a/6by (H,<H). (756)

Equations (73a) and (75b) may be found in Ref. 15. The
reverse curve for the low-H,, (0<H,, <H,) case can be
derived from Eq. (36} as

M{H)
= — H+ [(H2 +2HH, — H*)/4J,}(1/a + 1/b)
— (3H: +3H>H - 3H H*+ H*)/(12%b)
(—H,<H<H,). (76}

The reverse curve for the high-#,,
derived from Egs. (45) and {51} as

(H, <, ) case can be
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M(H) = —J.a(} —a/6b) + H, —H
— [(H,, — H)*/4J }(1/a + 1/b)
+ (H, — H)Y/ (127 2ab)
(H, —2H,<H<H,), (77a)
MH)=J.a(}—a/6b) (—H,<H<H,—2H,).
(77b)

B. Reduction io simple geomeitries

For the infinite slab, & /a— «, the above equations for
M(H) become, for the initial curve,

MH)= —H+H*/2J,a (0<H<H)), {78a)
MHy= ~Ja2 (H,<H}; {78b)
for the low-H,, (H,, <H,) curve,
M(H)= —H+(H] +2HH, — H")/4J a
(—H,<H<H,); (79)

and for the high-H,, (H, <H,, ) curve,
MH)= ~Ja/2+H, —H—(H, —H/4.a
(H, —2H,<H<H,}, (802)
M(H)=Ja/2 (—H,<H«H, —2H)). (30b)

For the cyiinder, b /a2 = 1, the corresponding equations
are, for the initial cruve,

MH)= —H+H*/Ja—H*/3(Ja) (O<H<H,),
(81a)
MH)= —Ja/3 (H,<H); (81b)
for the low-H, (H, < H ) Curve,
MH) = —-H4+(H2 +2HH, — H* /M .a
— (3H3 4+ 3HYLH - 3H, H*+ H*)/12(J,a)?
(—H,<H<H,}; (82)
and for the high-H,, (H, <H, ) curve,
MH)= —-Ja/3+H, —H
—(H, —HY /2 .a+ (H, — HY/12(J,.a)*
(H, —2H, <H<H,}, {83a}
MHYy=Ja/3 (—H,<H<H, 6 —-2H,). {83b)

Equations (78a), (78b), (79), (81a}, (81b), and (82) for
slabs and cylinders are the same as Egs. (2), {3),and (3) in
Ref. 2. Bean did not treat the high-H, case, only the initial
curves and the low-H, case.

C. Hysteresis loss

Although this paper deals with magnetization curves
rather than hysteresis loss W, it is straightforward to calcu-
late energy loss per unit volume per field cycle for ortho-
rhombic samples in the Bean limit. Generally,

(84a)

W:;,L0§HdM:/AO§MdH.
For the complete low-H,, loop, from Eq. (76),
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W=2u [J(a+b)—H,1/(3J2ab).  (84b)
For the complete high-#,, loop, from Egs. (77a} and (77b),
W=12uyf aff a{a—2b)+ H, (3b—a}]/3b. (84c)

¥i. DETERMINATION OF J (/) FROM THE WIDTH OF
THE HYSTERESIS LOOP

In this section we discuss two topics. First, we examine
the necessary conditions for using Bean’s model to deter-
mine J,. from hysteresis loop measurements assuming that
J.(H.) actually follows Eq. (1). Second, we offer a modifi-
cation of the conventional cylinder and slab formulas for J,
determination for the general orthorhombic Bean model.

A. Prerequisites for Bean formulation

The traditional way to determine critical-current den-
sity of superconductors from magnetic measurements is
based on Bean’s model, where J, is considered constant. To
determine J_(H), a hysteresis loop is obtained, and the
width of the hysteresis loop at a given field, AM(H), is mea-
sured. Bean’s model® gives

JA(H) =3AM(H)/2a {85a)
for cytinders of radius q, and
JAH)=AM(H)/a {85b)

for slabs of thickness 2a. Note that a field-dependent J_ is
countrary to the assumption used to derive the Bean equa-
tions.

There are two requirements for using Egs. (85a) and
(85b) for J, determination if J, (#,} is assumed to actually
follow Kim’s model. (1) The magnetization on ascending
and descending branches of the hysteresis loop at a given &
must correspond to fully penetrated states. {2} The maxi-
mum deviation of J, (H,) in the sample from J, (H, = H)
must be small. H is the uniform applied field, and H, is the
local internal field. The notation J, (H; = H) means J_ {H})
for H, = H These conditions will be expressed in terms of
recommended values of H,, H, and p.

1. Fully penetraied siates

For fully penetrated states, shielding currents circulate
in only one sense throughout the volume of the specimen for
the upper branch of the hysteresis loop and in the opposite
sense for the lower branch. The condition of full penetration
for both branches of the hysteresis loop is satisfied for the
high-H,, case (Sec. IIi D) when

H, >H*
and
H<H,, . (87

IfH, =HY%, then H,, =0, and the condition is satisfied
only for H = 0. To obtain a useful H interval, Eq. (86) is
restricted to

Hm >H?n * (863)

Asexamples, we obtain J(H), using Eq. (85a), from the
major hysteresis loops in Figs. 6(a)-6(e} (for which
H, >H?). The symbols in Figs. 8(a)-8(e) give the J, (H)

(86)
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FIG. 8. Comparison of J, (H) [symbols, obtained from the major loops in
Figs. 6(a)-6(e) using Eq. (85a)] with /_(H,) [smooth curve, cbtained
from Eq. (1) which was also used to compute the loops in Fig. 6]. Hand #,
are normalized to &,. J, (H) and J, (#,) are normalized to J, (H, = H,).
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thus obtained for p = 0.3, 1, 3, 10, and 1000. For compari-
son, the smooth curves in Figs. 8{a}-8(e) give J,(H,} de-
rived from Eq. (1). The H scales are normalized to H s and
the J, scales are normalized to J (H, = H,). We can see
from these figures that J, () and J.(H,) overlap in a cer-
tain A interval, somewhat different for each case. The upper
limit of this correspondence intervai is i, Eq. (47), even
for hysteresis loops where H,, >4H .

2 Uniform J_(H,}

Referring again to Figs. 8(a)~8(e), the lower limit of
overlapisabout .5 &, for most cases. For thecase p< 1, Fig.
8(a), this limit is much smaller. The reason for the extended
overlap range is that J, () is rather uniform for small p, so
that J (H) =J (H, = H).

We consider stages I] and IV of the hysteresis loop (Sec.
BI D). From Eqgs. (51) and (59a), we obtain AM(H).
Dropping the higher-order terms and substituting intc Eqs.
{85a) and (85b), we obtain

JAH)y =J,(H, = H)y{i +s[6H,(H)}*}, (88)
where

SH(H)y =AH (H)/(H,+ H), {88a)

AHA(HY=af (H, =H), {38b)

and wheres = 1 /4 for b /a— « (infiniteslab), ands = 1/20
for b /a = 1 (cylinder).

The field change relative to (H, + H) in the sample is
given by Eq. (88a). AH,(H) defined by Eg. (88b) is the
first-order difference between H,(0) and H, (). From Eq.
{88), J.(H) derived from AM (M) is always greater than
J(H,=H)., The difference between J.(H) and
J (H, = H) is determined by 8H, (H}, decreasing with de-
creasing @ and J, (H,) and increasing H,, and H. From the
factor s, the error in J, (#) is much smaller for a cylinder
than for a slab with the same a.

When H =0, we have to consider stages I and FI of the
loop. The requirements for small errors are the same as for
larger H except that J, (H) is always less than J, (H, = H).
When p< 1, H, is very large, and the error in J, { H) is very
small, even at H = 0.

B. Formula for orthorhombic samples

AM{H) inEqgs. (85a) and (85b) is the vertical width of
the hysteresis loop. In Sec. IV, we showed that the vertical
width of the hysteresis loop increases with increasing b /a. If
we use Eq. (85b) to calculate J(H) for the samples with the
same ¢ but different b, different J_, will be obtained even for
the same superconductor material. Thus, we derive a for-
mula for orthorhombic samples using Bean’s model. In the
penetrated state, using Eq. (i8h) with x,=0 and
J(x) = — J_, we obtain

M(x)= —J(a—x}. (89)

Substituting Eq. (89) into Eq. (7), or simply subtracting
Egs. (77b} and {75b), we have

AM = J,a(l —a/3b) . (50}

Rearranging, we obtain the general formula

D. -X. Chen and R. B. Goldfarb 2499




S (H) = AM{H)/[a{l —a/38)] . (91

It reduces to Eq. (85a) when b /2 = 1, and Eq. {85b) when
b /a— « . Equation {85a) applies to polygons as well as cyl-
inders, following the argument of Sec. II B. Equation {91)
has also been derived by Clem.™®

Vil. CONCLUSION

Since the original work of Bean and London, the criti-
cal-state model has been used by many researchers to de-
scribe the magnetic response of hard type-II superconduc-
tors. The model has provided a simple, intuitive framework
in which data could be analyzed, despite the need for ap-
proximations when applying the model to samples of finite
dimensions. The refinements by Kim ef al. were an effort to
incorporate the field dependence of critical-current density.
The results were magnetization curves that more closely re-
sembled experimental data, particularly at low fields. Sever-
al other anthors have attempted, with some suceess, to ex-
tend the critical-state model for various appiications.

In this paper we have developed some useful equations
for the analysis of magnetization of type-1I superconductors
within the construct of the critical-state theory. Using Kim’s
model for critical-current density, Eq. (1), we have analyti-
cally derived magnetization equations for the general case of
an infinite superconductor with rectangular cross section.
Different equations apply to the various parts of the magnet-
ic hysteresis loop. Section IIf D gave the equations for the
most useful case of large maximum applied field. Examples
of the possible variety of magnetization curves were given in
the figures. If we take different dimensional limits, the solu-
tions apply to infinite slabs, cylinders, and rods with poly-
gonal cross sections.

The general Kim solution can be reduced to a general
Bean model for rectangular cross section by reducing the
Kim equation for critical-current density (Sec. V A). In the
appropriate dimensiona!l limits, these equations become the
well known Bean solutions for slabs and cylinders (Sec.
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V B). A simple formula was derived to relate the width of a
measured hysteresis loop to the critical-current density as a
function of applied feld, for orthorhombic samples in the
Bean limit (Sec. VI B).
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