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Abstract  —  We propose a metric that quantifies the 
degree of nonlinearity of state-space trajectories for purpose 
of improving the selection of collections of measurement data 
in the development of behavioral models. We illustrate the 
method with an off-the-shelf amplifier. 

Index Terms  —  Behavioral model, large-signal 
measurements, metric, nonlinearity, state-space trajectory. 

I. INTRODUCTION 

In this paper, we investigate ways of determining 
whether or not a device is linear from its state-space 
trajectories, and quantify the degree of nonlinearity with a 
time-domain-based metric. We then show how this metric 
leads to an improved method of sampling measured data 
for the development of behavioral models. We 
demonstrate the new sampling scheme with a 
measurement-based model, and demonstrate that it 
quantitatively improves model accuracy. 

The state-space of a device-under-test (DUT) is usually 
multi-dimensional [1]. Since the dependency on the 
terminal voltages V1 and V2 often dominates, we limit the 
proposed metric in this work to the (V1,V2) plane. A 
common way of plotting the voltage trajectories of an 
amplifier is shown in the left plot of Fig. 1. The figure 
plots the simulated output voltage V2 of an amplifier on 
the vertical axis as a function of the input voltage V1 of the 
amplifier, under large-signal excitation.  

Each trajectory in Fig. 1 corresponds to a single RF 
cycle of a three-tone multisine excitation with a different 
input-voltage level. The multisine excitation had an RF 
carrier frequency of 800 MHz, and we sampled the IF 
period equidistantly in time to collect the set of RF 
trajectories. Ref. [2] explains this procedure in detail. 

As the input voltage level increases, the trajectories 
grow larger and become distorted, indicating significant 
nonlinearity. We see clearly from inspection that the 
device of Fig. 1 is not linear at the higher input voltage 
levels. However, determining exactly when the 
nonlinearity sets in, or how to quantify the degree of 
nonlinearity is not easy. In this paper, we suggest a way of 

normalizing these trajectories in order to detect and 
quantify the degree of nonlinear behavior, and to 
demonstrate the usefulness of this normalization with a 
modeling example. 

II. NORMALIZED STATE-SPACE TRAJECTORIES 

To illustrate our method, we plotted in the left plot of 
Fig. 2 the (V1,V2) trajectories of a 50 Ω transmission line 
with an electrical length of 110 degrees. Due to the 
distributed nature of the transmission line, the trajectories 
are ellipses. Since the curves do not lie on top of each 
other, we cannot tell by inspection whether the device is 
truly linear. 

We can better tell whether the device is nonlinear by 
using the scaling properties of linear devices. If we scale 
the input signal of a linear DUT, its response at the output 
will be scaled by a similar amount. Utilizing this property, 
we normalized the (V1,V2) trajectories with respect to the 
peak voltage a1p of the incident traveling voltage wave a1 
in the right side plots of Figs. 1 and 2. 

For the 50 Ω transmission line, the result of this 
normalization is shown on the right plot of Fig. 2. We see 
that the normalized trajectories are identical, allowing us 
to identify it easily as linear. In fact, the normalized 
trajectories of any linear device will always be identical, 
giving us an unambiguous way of identifying linear 
devices from their trajectories. However, in the right plot 
of Fig. 1, we see that the normalized trajectories of our 
amplifier are not identical, from which we conclude that 
the amplifier is nonlinear. 

III. METRIC FOR STATE-SPACE TRAJECTORIES 

We can use the normalized trajectory plots to quantify 
the degree of nonlinearity of a device. We begin by 
choosing a reference trajectory corresponding to an input 
amplitude small enough that the device behaves linearly, 
but large enough to measure the input amplitude 
accurately (i.e., well above the noise floor).  
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Next, we calculate the root-mean-square (RMS) value 
of the orthogonal distance between each normalized 
trajectory (corresponding to one RF period) and the 
normalized reference trajectory. To facilitate the 
calculation, we first phase align each cycle. 

If the device is linear, the normalized trajectories will 
coincide, and the RMS values of these orthogonal 
distances are zero. On the other hand, if the device is not 
acting linearly, the normalized trajectories will not 
coincide, and this will be reflected by nonzero RMS 
distances between the normalized trajectories and the 
normalized reference trajectory. A higher RMS value 
indicates a higher degree of nonlinearity. 

Our metric yields a value of zero for the transmission 
line of Fig. 2. Figure 3 illustrates this metric for the 
amplifier of Fig. 1. As the peak incident voltage a1p 
increases, so does the value of sigma. 

This metric is defined in the time-domain to have the 
logical connection to the state-space concept. Whereas a 
frequency-domain metric could also be defined to express 
the degree of nonlinearity, the interpretation in terms of 
state-space (coverage) is no longer straightforward. 

IV. APPLICATION TO BEHAVIORAL MODELING 

The behavioral modeling scheme of [2] is based on 
matching a state-space model to measured trajectories. To 

limit computation time, the number of trajectories used 
must be restricted. We applied our time-domain-based 
metric to optimize the selection of these trajectories. The 
goal was to minimize the number of trajectories while still 
capturing the nonlinear behavior of the device. Intuitively, 
we expect that fewer trajectories should be used over the 
operating ranges where the device is acting linearly, and 
that a denser grid of trajectories is required where the 
device is acting nonlinearly. 

As an experimental test case, we used an off-the-shelf 
coaxial amplifier (different from the simulated amplifier 
of Fig. 1), which we excited with a nine-tone multisine 
excitation at 800 MHz. Each tone of the multisine 
excitation had constant magnitude and phase (chosen to be 
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Fig. 3.  RMS metric as a function of peak incident voltage for 
the simulated amplifier of Fig. 1. 

Fig. 2.  Unnormalized (left) and normalized (right) trajectories for a short 50 Ohm transmission line. 

Fig. 1.  Unnormalized (left) and normalized (right) trajectories for a simulated amplifier. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0 1.0

0.5

1.0

1.5

0.0

2.0

a1p [V]

si
gm

a

796



zero degrees at the calibration reference plane). Twenty 
RF trajectories based on the equidistant sampling of the IF 
period (called ‘temporally equidistant sampling’ in the 
following) are shown in Fig. 4 and the corresponding 
RMS values are plotted in Fig. 6. Due to the limited 
dynamic range of our measurements, we selected the gray 
dotted trajectory in Fig. 4 as the reference trajectory, 
rather than the trajectory with the smallest power. 

Figure 5 shows another twenty trajectories chosen to 
more uniformly spread the RMS values of our metric over 
its total range. We call this the “uniform-valued” selection 
scheme. We added several trajectories at low RMS values, 
since the fitting function used to represent the device’s 
behavior would be forced to interpolate strongly if no 
trajectories at low amplitudes had been included. In other 
words, the final criterion we used to select suitable 
trajectories for the uniform-valued scheme was based on a 
combination of the variation in RMS values, as well as 
distance between trajectories. This scheme yields better 
coverage than the temporally equidistant scheme. As we 
will see later, our proposed method can improve the 
accuracy of models based on measured data. 

Figure 6 compares the RMS values of our metric for the 
two sampling schemes, with values associated with the 
temporally equidistant scheme of Fig. 4 represented by 
triangles, and values associated with the uniform-valued 
scheme of Fig. 5 represented by circles. The high and 
rather noisy RMS values from lower a1p are due to the 
limited dynamic range of the measurement. In Fig. 6, we 
also notice large jumps between values of our metric 
using the temporally equidistant scheme of Fig. 4 at the 
higher input voltages. 

We constructed two models to evaluate the influence of 
the sampling scheme, and compared them in Tables I and 
II. The model labeled “temporal” corresponds to the 
temporally equidistant sampling scheme of Fig. 4, while 
the model labeled “uniform” corresponds to the uniform-
valued scheme illustrated in Fig. 5. The number of chosen 

trajectories was ten, which means that we used every other 
trajectory shown in Figs. 4 and 5. The models were 
trained using an artificial neural network (ANN) with one 
hidden layer and six hidden neurons. 

The two models were subsequently subjected to several 
test excitations, all of which differ from those used to 
construct the models. Tables I and II compare 
measurements and model predictions for two of these test 
excitations. The tables list values for b2 corresponding to 
two of the fundamental tones, and to one spectral 
component of an intermodulation product. The test 
excitations are a 17-tone multisine with a constant-
amplitude and Schroeder phase spectrum (Table I), and a 
nine-tone multisine with a constant-amplitude and 
Schroeder phase spectrum (Table II). In a Schroeder phase 
spectrum [3], the tones have a particular phase 
relationship that ensures a low crest factor.  

A smaller vector difference indicates better agreement, 
so that the tables show a clear improvement in the 
accuracy of the models when the trajectories are selected 
with the uniform-valued scheme, based on our metric. As 
the two examples show, the level of improvement depends 
on the actual experimental conditions.  
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Fig. 6.  Values of RMS metric for the temporally equidistant 
sampling scheme (black triangles) and the scheme yielding 
approximately uniform distribution of RMS values (gray 
circles). 

Fig. 5. Twenty unnormalized trajectories for the measured 
amplifier chosen according to the uniform-valued selection 
scheme. The reference trajectory is gray dotted. 

Fig. 4. Twenty temporally equidistant unnormalized
trajectories for the measured amplifier. The reference
trajectory is gray dotted. 
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We also constructed models based on 20 trajectories, 
but the difference between the two sampling approaches 
became minor. The reason is that the level of interpolation 
becomes smaller with increasing number of trajectories. 
However, note that, as stated in the beginning, we prefer 
to use fewer trajectories in order to maintain the modelling 
efficiency. 

V. CONCLUSION 

We developed a normalization technique for state-space 
trajectory plots that allows immediate detection of 
nonlinear device behavior. We then formulated a temporal 
metric that expresses the degree of nonlinearity of state-
space trajectories. By sampling the state-space trajectories 
to give uniform distribution in metric values, we obtained 
higher model accuracy for a very small number of 
trajectories, compared to equidistant sampling in time. 
However, we also found that this advantage diminishes 
with an increasing number of trajectories, as the fitting 
functions yield higher-quality interpolations. These 
techniques may be useful for identifying and quantifying 
nonlinear device behavior, and for obtaining the greatest 

information possible about the device behavior with the 
smallest number of measurements (or simulations).  

Since this work focused on the (V1,V2) voltage plane, a 
next step would be to generalize this formalism for a state-
space of higher dimensions. 
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Table I.  Measured results and corresponding differences between predictions and measurements for the two models. The first two 
entries correspond to values of b2 at two of the excitation frequencies, while the third entry corresponds to the value of b2 at an 
intermodulation product frequency. The test excitation is a 17-tone multisine test signal having a constant-amplitude and a Schroeder 
phase spectrum, and a frequency spacing of 100 kHz. 

 

 

 
 
 
 
 
 
 

Table II.  Measured results and corresponding differences between predictions and measurements for the two models. The first two 
entries correspond to values of b2 at two of the excitation frequencies, while the third entry corresponds to the value of b2 at an 
intermodulation product frequency. The test excitation is a 9-tone multisine test signal having a constant-amplitude and a Schroeder 
phase spectrum, and a frequency spacing of 200 kHz.  

 

MAGNITUDE PHASE (degrees)  
vector difference 

(dB) 
phase difference 

 

measurement 
(dBm) 

temporal uniform 

measurement 
value 

temporal uniform 
b2,800.0MHz 3.25 -31.24 -41.75 -129.99 1.31 -0.36 
b2,800.8MHz 3.00 -35.15 -44.58 86.61 1.51 0.72 
b2,799.0991MHz -25.45 -38.91 -42.04 138.40 41.23 1.47 

MAGNITUDE PHASE (degrees) 
vector difference (dB) phase difference 

 
measurement 

(dBm) temporal uniform 
measurement 

value temporal uniform 
b2,800.0MHz 4.73 -30.57 -44.10 35.91 2.36 0.46 
b2,800.8002MHz 4.77 -28.69 -35.83 124.76 2.18 1.31 
b2,798.9998MHz -31.16 -46.83 -52.19 -141.22 31.37 -8.98 
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