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Abstract This paper examines modal cross power in electromagnetic transmission lines.
It shows that the cross powers of nearly degenerate modes may be large in quasi-TEM
multiconductor transmission lines typical of modern electronic circuits at moderate and low
microwave frequencies. The paper develops simple expressions to estimate the magnitude
of these cross powers from the “power-normalized” conductor impedance and admittance

matrices of the lines.

INTRODUCTION

This paper examines modal cross power in multiconductor transmission lines typical of
modern electronic circuits and presents expressions useful for estimating their importance.

The total electric fieldE and magnetic fieltH in a closed transmission line uniformziand
constructed of linear isotropic materials can be writteE a3 c* e”"*(e, e, 2) and
H=Y" ¢ e”(zh_+h, 2), wherec?® are the forward and reverse excitation coefficients of the
nth n’?ode,yn IS its propagation constant, and its transverse modal electric and magnete; fields
andh,, and its longitudinal modal electric and magnetic figlgsindh,,, are functions only of the
transverse coordinatesandy [1]. Herezis the unit vector in thedirection, which coincides

with the direction of propagation, and the time harmonic dependéticevherew is the real
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angular frequency, has been suppressed. In open guides we must add a continuous spectrum of
modes to this discrete set [2].
When only a finite number of the discrete modes are excited in the line, the total complex

powerp there is

p = [Ext"zdS = Y[c, e"rc e ) [, e e Y P 0
nm
where the sum is taken over all the excited moBgs= f e, xh,, "z dS , and the integrals are

performed over the transmission-line cross section. We will ca® théor n=m the modal cross
powers and will use the unitless scalgfs= P, Pmd(P P ma to quantify their significance.

Lossless modes are power orthogonal when they are not degenerate; that is, their modal cross
powers are 0 (i.€,,,=0) wheny 2#y .2 [1]. Most equivalent circuit theories for multimode
transmission lines begin with assumptions of power-orthogonal modes.

When(,,, is nonzero, which is only possible in lossy guides, the total power in the line can no
longer be calculated as a simple sum of the powers carried by each pair of forward and backward
modes and, in the terminology of [3], we would say that the modes are coupled. In these cases
equivalent-circuit theories for multimode transmission lines based on assumptions of power-
orthogonal modes would not apply.

Modal symmetries eliminate the cross powers of the modes of low-loss circular and coaxial
waveguides [3]. The cross powers of low-loss rectangular waveguide modes are generally small
except at frequencies where the modes are nearly degenerate. At these frequencies the modes
couple and the field patterns of each of the lossy coupled modes can be represented to first order
as linear combinations of the field patterns of lossless uncoupled modal solutions, which gives rise
to large modal cross powers [3], [4]. While [3] and [4] use perturbation theories to construct the
actual modal fields from superpositions of lossless solutions, this theory cannot be applied to
highly lossy lines typical of modern circuits. In any case, since these near degeneracies in
rectangular waveguides are limited to narrow bands of frequencies above the convgopienal

frequency limit of the guide they may often be ignored in practice.
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accounting for them in thermal noise Figure 1. The coupled microstrip transmission lines of [5].
calculations. Faché and De Zutter have

constructed an equivalent circuit theory based on power-normalized “conductor” voltages and
currents that accounts rigorously for modal cross powers even when losses are large [6]. This
theory has been clarified and extended in [7], [8], and [9]. However these works do not discuss
the mechanisms and conditions that give rise to large modal cross powers.

The high resistive losses of the small printed multiconductor transmission lines typical of
modern electronic circuits complicate their modal dispersion relations and often create near
degeneracies over broad ranges of useful frequencies. In this work we will investigate the cross
powers of the modes of some typical lossy multiconductor transmission lines and show that these
near degeneracies often result in lafge We will illustrate this with the coupled asymmetric
microstrip lines of Figure 1 and will develop useful expressiong foin terms of the “power-
normalized” transmission-line impedances and admittances per unit length of [6], which may often

be estimated from static analyses [10].
QUASI-TEM ILLUSTRATION

The coupled lines of Figure 1 support two dominant quasi-TEM modes, which are commonly
called thec andn® modes, and which correspond to the even and the odd mode of the symmetric
case, respectively. We verified that these modes were quasi-TEM by calculating the
ratiosf|ez|2d8/f|et|2d8 an§f|hz|2d8/f|ht|2d8 with the full-wave method of [11], and found
that they approached 0 at low frequencies and were less than 0.001 below 10 GHz.

At high frequency the metal losses in the coupled lines of Figure 1 can be neglected and the

propagation constant of tikemode, which concentrates energy in the dielectric substrate, is



substantially larger than that of themode, 031
which has significant energy in the air region
above the dielectric substrate. However the 0al
higher loss of the mode forces its 5 !
propagation constant to rise more rapidly at 7 .

low frequencies than the propagation

constant of the mode, inevitably causing,

ol
andy to become nearly degenerate at some 0.05

intermediate frequencies. Frequency (GHz)
. Figure 2. The square root of {. for the asymmetric
Figure 2 plots the square root@f coupled microstrip lines of Figure 1. The solid lines

dcorrespond to values calculated directly from modal
clectromagnetic fields determined by the full-wave method
by the full-wave method of [11] in solid Iines,Of [11]. The dashed line correspond to values for t=0.5

pm calculated from (2) and estimates of the transmission-
values which we verified with a method basdahe circuit parameters.

calculated directly from the fields determine

on that of [12]. Althougld, is always O due

to the even/odd symmetry of the fields when the conductor widths are &qdai,the

asymmetric case shown in the figure rises wheandy .. become nearly degenerate [5], an
observation consistent with similar phenomena observed in rectangular waveguides [3], [4]. For
the line of Figure 1 with 0.5 pum thick conductor metal, for exanylendy .. become close in

the frequency range 300 MHz-5 GHz, witjje peaks at about 1 GHz.

ALGEBRAIC EXPRESSIONS FOR

TheP,,, fix relations between the modal and the power-normalized “circuit” voltages and
currents of [6] and can be determined from products of the matrices relating those quantities. The
unitless measuré,,, can be determined solely from the matrices of power-normalized conductor
impedances per unit lengllx R+jwL and admittances per unit lengthG+jwC of the line
without detailed knowledge of how the modal and circuit quantities in the theory of [6] are

normalized (., is found fromZ andY by



_ [b()"a,)] [b(r) a(h)]
[b(x,) a(t,)] [b(h ) a(t,)]

@)

nm

where superscript “t” signifies Hermitian conjugate (conjugate transgag) anda(t,,) are the
eigenvectors ofi=Z Y with eigenvalued =y 2 andA,=y % andb(A,) andb(A,) are the
eigenvectors off=Y Z with eigenvalued,, andA,, [6].

Reference [9] shows for tlieandn modes of Figure 1 th& is nearly O when there are no
dielectric losses, that is nearly constant with frequency, and thatses only slightly at the low
frequencies whil& increases only moderately at the high frequencies in a fashion consistent with
the effects of field-penetration into the thin metal conductors, making them easy to estimate.
Figure 2 shows in dashed lings for the metal thicknegs0.5 pm calculated froif2) using
static estimates df andC from the method of [10]G=0, and the low frequency limit &, which
we determined from the dc resistances of the conductors. It compares it to the direct calculation
from the modal electromagnetic fields determined by the full-wave method of [11] (solid lines)
and shows that the estimate is accurate enough to determine when the modal cross powers are
significant. We found similar agreement for the other metal thicknesses of Figure 2.

WhenZ andY are diagonal the(2) shows that =0, asa=[3 are also diagonal and their
eigenvectors can be taken to be the columns of the identity matrix.

WhenZ andY are symmetric, which we found to be a very good approximation farahd
7 modes of Figure 1 and which [13] argues is true for all quasi-TEM modedgithemwhere
superscript t” signifies transpose. This implies tHxf,)'a(A)=b(A )'a(A )=0, and we see from
(2) that¢,,,=0 whenever the eigenvectorscofind can be taken real.

Since for thee andn modes of Figure & is nearly O and, L, andR depend only weakly on
frequency [9]. becomes purely real at very high frequenadied {|»| R, |) and purely imaginary
at very low frequenciesa(L; |«|R;|). Z andY are positive definite, which [13] argues is always
true for quasi-TEM modes, with the consequence that the eigenvectoesetlso nearly real at
the two frequency extremes. This explains the tendency seen in Figufg 2oodpproach 0 at

these extremes.



If G=0 andR, L, andC are independent of frequency, which are reasonable approximations
for the case studied here [9], scalR@ndw by a constant real facterscales by s. This leaves
the eigenvectors af, and thus the value @f., constant and explains the shift of the maximum of
(., In Figure 2 to lower frequencies when the conductor losses are reduced by increasing metal
thickness. It also explains why the maximum value and shafe @ées not change greatly as the
metal thickness is varied.

For two modes the eigenvalue/eigenvector problem can be solved explicitly in terms of the

elements of andf. Whenf=c' then(2) becomes

la(,) -a(2,) |2

Cp=1- 1 3
(A -a(r,)" |2
whereq(A)=(A-c,)/ e, =0 ,{(A-a ) is the ratio of the second to the first element of the
eigenvector associated with the eigenvalue’z(e, +a.,,) il/z\/(ocll—oczz)2+4a21oc12 . Equédipn
shows that ,, is real and less than or equal to 1.
An equivalent form fo(3) is
Ay =2,/
2= 1- — @

Im(po)|2+ |Re(, - 4,)0) |2

wherep==+(c, -0, ando=xa,, /| o,|=%|e /e 1,01 0=k, /] oy =t| oo /e 5, IM(pa) will be

small when losses are low, §g may remain small even quite near the degeneracies of low-loss
modes. However when Im§) differs significantly from O, which will usually be the case in lossy
structures, equatiof@) shows that ,, will approach 1 as two modes become degenerate. This
shows that nearly degenerate lossy modes will often have large cross powers and explains the

observed rise dof, in Figure 2 where . andy, were close.



CONCLUSION

Both full-wave field calculations and static estimates show that large modal cross powers are
not limited to exotic or highly lossy structures, but occur between nearly degenerate modes of
practical planar quasi-TEM multiconductor transmission lines in common use in modern
electronic circuits. The cross-power levels can be determined from the power-normalized
equivalent-circuit parameters of the transmission line, which have a weak dependance on
frequency and are easily estimated. The results show that the modal description can have a
complicated dependance on frequency even when the equivalent-circuit description does not and
argue that equivalent circuit theories such as those described in [6], [7], [8], and [9], which

rigorously account for modal cross powers, are required to treat these common circuit elements.
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