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Abstract - A Classical calibration methods use S-parameters as

raw data and do not take measurement uncertainty into account.
As such, these methods are deterministic in nature. Recent
‘stochastic’ calibration approaches rely on the statistics of S-
parameters, that are very difficult to obtain under practical
constraints.
Since network analysers mainly measure waves, a wave based
stochastic calibration framework is proposed here to circumvent
this problem. Existing (auto-)calibration measurement sequences
can easily be included. The framework provides: (i) confidence
bounds on the calibration data, (ii) a flexible definition of custom
calibration standard sequences, and (iii) a straightforward
extension to multiport devices.

1. INTRODUCTION

During the last decades, a lot of methods for the calibration of
vectorial network analysers (VNA) have been developed.
Looking back at the evolution of the calibration procedures, it
is striking that newer calibration procedures require less prior
knowledge and less stringent assumptions than the older ones.

Starting from an SOLT calibration where all the calibration
standards are assumed to be known perfectly, one ends with
the multi-line TRL methods, where prior knowledge about the
standards is reduced to the knowledge that the standard is a
transmission line of known length or a repeatable reflection.

One thing that remains inflexible in these methods, is that
they require an a priori defined set of calibration elements to
work properly. Since modern RF and microwave measure-
ments are moving towards probed on-chip applications, it is
often the case that a set of test structures that is available on
the die does not perfectly fulfil all the constraints imposed by
the rigid calibration procedures.

From the measurement point of view, classical methods
start with the assumption of noise-free data, which is reasona-
ble for narrow band detection as is used in the linear VNA.
Whenever wide band IF detection is used, as is the case for
pulsed RF setups or network analysers for nonlinear systems,
the data can no longer be assumed to be noise-free and a ‘sto-
chastic’ calibration, that takes measurement and reconnection
noise into account, increases the accuracy of the final data sig-
nificantly.

What is common to all the calibration procedures is that they
rely on the basic assumption that the S-parameters are the
measured quantity. This assumption is not really valid in
practice, as the measured quantity in a VNA is often a wave
instead of a wave ratio. From a statistical point of view, using
the raw S-parameters instead of the raw waves as an input

quantity to the calibration is not a good practice, as the
distribution of the ratio of normal distributed quantities is not
a well behaved random variable.

In this work, an approach is proposed that starts from
measured waves with known or measurable statistical proper-
ties, and allows to calibrate a VNA for linear or nonlinear sys-
tems whenever a sufficient set of sufficiently well known
standards is available.

II. THE CONSIDERED SETUP

A. Properties of the Analyzer
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Fig. 1. Setup of the N D -port analyser.

The general case of an N, -port analyser is considered, as is
shown in Figure 1. The basic knowledge about the operation
of the instrument is to be formalised first.

Assumption 1. The VNA is a linear, time invariant system
(LTD).

In practice, this means that for any frequency ® in the
operating range of the analyser, the relation between the
unknown noise-free waves W, distorted by the network ana-
lyser and the exact unknown waves W, impinging the device
under test (DUT) is linear. When put in vector notation,

W () = D)W (o) ey

where the wave vectors W contain the stacked waves
impinging the successive ports of the VNA, viz.
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and the matrix D isthe 2N X 2N _ complex compensation
matrix that ideally inverts the non-ideality of the VNA. The
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whole idea of the calibration procedure is to determine this
matrix and its associated error bound as accurately as possi-
ble.

To this end, a number of successive experiments is carried
out, each with a different set of standards connected to the
ports of the VNA. The set of standards used in one experiment
is from now on called a calibration box or calbox. The number
of calboxes that is used in the process of the calibration is
labelled N, . Note that a calbox can contain any combination
of 1-port standards (impedances) and 2-port standards (trans-
mission lines, thru connections or known 2-port devices such
as ecal devices). Since the calboxes contain different stand-
ards and use distinct measurements, it is of good practice to
assume that

Assumption 2. The measurements performed to characterise
the calboxes used in a calibration process are independent
from calbox to calbox.

Essentially, this means that the measurements performed
when one set of standards is hooked up do not depend on the
measurements of the previously connected set of standards.
Each calbox is characterised using N, independent
measurements, that are obtained exciting each port of the
VNA in turn. In total, Nch different sets of waves are
acquired during the calibration process.

III. THE NOISE FRAMEWORK

Since the goal of this paper is to obtain a statistically sound
treatment of the noise, it will not only identify the
compensation matrix D, but also calculate the statistical
confidence bounds on the calibration. To get there, a clear cut
definition of the ‘noise’ perturbation in the setup is necessary.
Four different classes of perturbation are taken into account:
two classes relate to the instrument and two others relate to
the standards themselves.

A. Instrument measurement noise

The measurement noise contains any random perturbation
that is generated by the instrument itself. This contribution is
assumed to behave as an additive perturbation on the distorted
waves measured by the VNA. Put in equations, the influence
of the measurement noise is:

W, (@) = W () +n, (o) 3)

where a suffix m indicates a measured quantity. Since this
noise source is built up as the sum a large number of different
noise contributions, it is sensible to assume that

Assumption 3. the noise n, (®) on the measured waves is
additive complex circular normal distributed with zero mean.

The assumed noise properties can be proven to hold when-
ever the wave spectra are obtained using the Discrete Fourier
Transform (DFT) of a measured time sequence ([1]). In any
case, they can be verified experimentally.

B. Physical noise produced by standards and DUT.

Most often, the physical noise produced by the standards, that
are passive elements, is much smaller than the measurement
noise of the instrumentation hardware and can therefore safely
be neglected. In the case of a (noisy) DUT however, this is no
longer acceptable in general.

As the physical noise contaminates the input waves of the
VNA, it is modelled as a disturbance on the ‘exact’ waves:

Wen(@) = W (0)+n,, (o) “

Again, since the DUT noise consists of the sum of a large
number of noise sources, it is safe to assume that

Assumption 4. the physical noise produced by the DUT and
the standards n,, (®) is additive complex circular normal
distributed with zero mean.

C. (Re)connection noise.

On top of the measurement noise, there is another, much more
insidious noise source that corrupts the measured waves:
signal connections at microwave frequencies are not perfectly
repeatable. Measuring the same standard twice with and
without a reconnection can significantly alter the measured
data.

For a narrow band IF system like a classical VNA, the
influence of the reconnection noise is easily a factor larger
than the measurement noise in practice, as is shown in
Figure 2. The 10 curves labelled ‘Expl’ on the figure show

2X 10-3
be o

B | W \"f 1{l'EXp2 W.
[_‘E | 1”[‘[ ‘ I'Hn w“l‘w w‘.

1 l“ll \ 4
ol W

fl'lf t WHHL Expl i M

i

0 200 400 600 800

Fig. 2. Variation of 10 repeated measurements without (bottom curves) and
with (top curves) reconnection of a load on an Agilent PNA network analyser
is shown.

the spread of 10 repeated measurements of a load around its
mean value without reconnection. The set of curves labelled
‘Exp2’ is obtained similarly after reconnection of the
standard. The spread is calculated with respect to the mean
value of the first experiment. Note the large, seemingly
deterministic deviation of the standard’ reflection factor, that
shows the influence of the realisation of the reconnection
noise source.



Two possible models for the reconnection error can be pro-
posed. From the physical perspective, it is tempting to con-
sider the reconnection as a part of the standard element, and
hence to include it as a perturbation that corrupts the standard
itself, leading to a perturbed set of S -parameters,

S, (©) = S, (©)+5,(®) 5)

where the lower case letter indicates the noise contribution. A
second, equivalent description leaves the S -parameters of the
standards untouched, and considers the reconnection error as
a perturbation on the exact waves,

W, (@) = W, (0) + 5 (0a,(@) = W, (0) +n(0) (6)

Even if these descriptions are equivalent from the noise
modelling point of view, it will become clear later in the paper
that the selection of this model influences the estimation proc-
ess.

Recall that this type of perturbation is invisible as long as
no reconnection is performed: the measured data looks per-
fectly smooth and the perturbation appears to be absent.
Again, it will be assumed that

Assumption 5. The reconnection noise n, is a complex
circular normal distributed random process with zero mean,
that is random with respect to the reconnection.

The reconnection error is only present on the exact
reflected wave for one-port standards, and on all but the exact
excitation wave for two port standards. Note also that in the
two-port case, this error has also a highly structured covari-
ance matrix.

D. Uncertainty on the calibration standards

To make the noise framework complete, a last source of
error is to be included, namely the error on the standards
themselves.

If the calibration is performed in a connectorized setup, it is
uncommon that the end-user possesses a sufficient number of
standard elements to be able to characterise the spread on the
standard values. One then has to rely on the error bounds that
are provided by the manufacturer of the standard elements.

If, on the other hand, the calibration is performed in an on-
wafer environment, a number of similar standards can be
available or the uncertainty on the standards can be calculated
using the process parameters of the production process.

Most often, transmission lines are used as an on-wafer cali-
bration element. This is for example the case for the multi-line
TRL calibration ([2]). The initial step in such calibration pro-
cedures consists of the determination of the complex propaga-
tion constant of the standards. If this property is identified
properly, its variance is obtained as a by-product of the esti-
mation process ([3]) and can then be used here to characterise
the standards. In all cases, it will again be assumed that

Assumption 6. the ‘noise’ on the standard value is complex
circular normal distributed with zero mean, that is
independent from one standard to the other.

This disturbance corrupts the reflection factor for 1-port
standards, and the S-parameter matrix for 2-port standards. As
was the case for the reconnection noise, the covariance matrix
of this noise process will be highly structured. The noise
source perturbs the exact S-parameters, viz.

Sem(®) = S () +n(0) (N

em

Note that not all the elements in the disturbance vector need to
be non-zero.

E. The general disturbance model

Adding up all the disturbances in one general noise
framework, one obtains two possible perturbation descriptions
for the measured waves and standard elements:

W, (0) = D(@)(W, (o) +n,, (0)+n(0)+n,(0) ®
S, (@) = S, (W) +n(w)
or as an alternative,
W, (@) = D(@)(W (o) +n,, () +n,(0) ©
S,m(@) = S, (®)+n/(0)+s,(®a, (o)

Now that the noise model for a single experiment is
derived, it will be extended to cover the calibration process as
a whole.

IV. INTRODUCTION OF THE CALBOXES

A general calibration process consists of the concatenation
of a series of calbox experiments, that each involve a different
set of calibration standards. For the measurement noise, the
physical standard noise and the DUT noise, there is no inter-
action between successive calbox experiments, hence the
uncertainty of the total calibration is obtained by the addition
of the individual calbox noise contributions.

For the reconnection noise, the situation is again somewhat
more complex. The order in which the different calboxes are
combined matters, as this determines the number of reconnec-
tions that are to be performed and hence influences the recon-
nection uncertainty that is to be accounted for.

Without loss of generality, a 2-port VNA is used as an
example, and only reconnection noise is considered. To be
even more concrete, the variance of the noise for successive
calboxes (L, O,) and (L, S,) containing a load L, an open
O, and a short S are taken as an example.

If the reconnection noise is assumed to contaminate the
waves, the covariance of the measured quantities is:
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where the correlation matrix p,, accounts for the absence of
reconnection of the L, standard, and the G%Vk matrix for the
reconnection variance.



Gy, = diag( [llael 0ya,, 0 0} )

Py = diag([llrael 00 0})

Y

Note that the covariance matrix depends on the exact inci-
dent wave, that is not known in practice.

If the reconnection noise is assumed to influence the S -
parameters, the covariance matrix for the 2 calboxes becomes:

oy, diag([O La,, 0 szaez])
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Note that this time, an additional variable needs to be intro-
duced (and hence estimated) each time a standard is used in a
calbox. The absence of a reconnection for the load in the two
calboxes is then expressed in the full correlation of the corre-
sponding entries of the covariance matrix.

Theoretically speaking, both alternatives result in the addi-
tion of a number of variables to the parameter vector. For the
parameters to be identifiable, more calboxes will therefore be
required, resulting in a longer calibration process.

This can be circumvented in the former alternative, if the
exact input waves are replaced by their measured counter-
parts, and the influence of the noise on the power of the inci-
dent wave is neglected to obtain a fixed, deterministic
covariance matrix. As the incident wave in the calibration
process has a high signal-to-noise ratio, this assumption is
acceptable.

It is not clear a priori if one alternative will yield a lower
variance as the other. Therefore, in this first attempt, the first
alternative is selected according to the parsimony principle.
Grouping the noise sources according to their stochastic
dependence, while leaving out the explicit dependence on the
frequency to simplify the notation, one obtains

W,=W,+Dn +(n, +Dn, )=W;+n,
13)
Som = S, + 1y

Based on this known structure, a way to characterise the

perturbation experimentally is derived next.

V. MEASURING THE NOISE SOURCES
A. Sources that are random with respect to time

As was shown in (13), the two sources n,;, ,and n  that are
random with respect to time perturb the result in a similar
way. The instrument distortion matrix D will smear the DUT
related noise to both incident and reflected measured waves. It
will therefore be impossible to separate their influence in the
noise analysis. From now on they will be considered to be one
noise source and are labelled measurement noise 7,,, .

The measurement noise is the most easy to characterise
experimentally. The variance of this noise source can be esti-
mated using the sample covariance C  obtained form syn-
chronised repeated measurements. Note that the experiments
are performed under identical experimental conditions.

Assumption 7. the start of the wave measurements is
synchronised to the excitation signal.

In the frequency domain, this means that the phase of the
exciting wave does not change in between repeated experi-
ments. Note that this is easy to fulfil in many practical cases.

B. Sources that are random with respect to reconnection

The characterisation of the reconnection error n (®) is
undertaken as an off-line process. The sample covariance C,
is again used as an estimation of the properties of this noise
source.

In this case, a sample is a reconnection experiment, and
hence the number of practical realisations is limited to less
than 10. This is sufficient to maintain the statistical properties
of the subsequent calibration procedure.

The nasty thing about this noise source is that it is operator-
dependent: skilled operators will obtain much lower variabil-
ity than unskilled ones. A new user is therefore requested to
perform a limited number of repeated connections to deter-
mine a sensible C, value.
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Fig. 3. Repeated measurements of the reflected wave of load using the
LSNA.

C. Sources that are random with respect to the physical
standard

In this case it is improbable that a sample variance can be
calculated, as this now requires different standards to be
present. If these standards are available, as can be the case in
on-wafer measurements, the sample covariance C, can again
be used to measure the noise properties, or can be obtained as
a by-product of the characterisation of the transmission lines
(see before).



VI. VERIFICATION: CIRCULAR NORMAL DISTRIBUTION.

The hypothesis of the circular complex normal distribution
is checked first. Thereto, 100 synchronised measurements of
the reflected wave of a load are taken using a LSNA vectorial
network analyser for nonlinear systems sold by Maury Micro-
waves, and plotted in the complex plane. The results con-
tained in Figure 3 show 2 successive runs of 100 experiments
that are taken with a delay of 24 hours.

Each separate cluster is tested for circularity: a correlation
between the real and imaginary parts of the waves could not
be detected, and the variance of the real and imaginary parts
of the waves are equal within their uncertainty. The noise
hence appears to be circular distributed.

Next, a normality test is performed using the same data.
The Kolmogorov-Smirnoff test indicates that the measured
waves have a normal distribution within the uncertainty levels
associated to the number of experiments.
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Fig. 4. The results of the Kolmogorov Smirnoff test indicate that the distribu-
tion of the measured waves is normal

The combination of both tests shows that the Assumption
3. is indeed valid for the performed measurement.

VII. VERIFICATION: SOLT REVISITED.

To highlight the difference between the proposed and the
traditional approach, a preliminary estimator has been devel-
oped that has been used in a simulation on a sample setup.
The setup considered contains a 2-port VNA with a pure 8-
term error behaviour: the ports are considered to be perfectly
isolated.

The SOLT calibration contains 4 calboxes. The first three
ones connect 2 loads, opens and shorts to both ports of the
VNA. The fourth calbox is an ideal thru connection. This sim-
plified setup is selected on purpose to show the properties of
the new framework.

In a first experiment, the standards are assumed to be
known exactly, and the reconnection noise is assumed to be
zero. As a result, only measurement noise is added to the
measured waves. The signal-to-noise ratio of the waves is set
to 60 dB, which is a typical setting for a VNA for nonlinear
systems. A total of 1000 simulations is performed. The com-
pensation matrix is calculated for the classical LOST and the
new WavCal. The mean squared error for each compensation
coefficient D[ i1

Ay = /\/(g({D[i,j]_De[i’j]}z) (14)

is shown together with their variance for both calibration
methods in Figure 5.

x10°

4.5¢

3.5¢

RMS error

2.5¢

Entries of the correction matrix

Fig. 5. Mean squared error dm  and standard deviation G for the classical
LOST (dms squares, G crosses) and the WaveCal (d circles, G pluses)
compensation coefficients.
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Fig. 6. Mean squared error dm . and standard deviation O for the classical
LOST ( dms squares, O crosses) and the WaveCal (dms circles, O pluses)
compensation coefficients.

The simulation shows that the standard deviation of the
parameters extracted with the new method is about 25% lower
than for the classical method. Since the mean squared error
and the standard deviation are equal, no bias is visible in the
result.Next, the influence of the uncertainty on the standards
is analysed. The level of the uncertainty on the standards is
chosen to be equal to the measurement uncertainty. This is an
idealisation of the reality in many cases.

As shown in Figure 6 the variability has increased for both
methods, but the speed of the increase is lower for the new
method. There is still no visible bias on the measurements.



When the same simulation is done over again, but the
standard noise variance is forced to zero in the new method,
the cost function shows a significant increase, which indicated
a high sensitivity of the method to modelling errors.

VIII. CONCLUSION

A wave based stochastic calibration framework was devel-
oped. The concept of calibration based on waves as input data
has been shown to be feasable. It has also been shown that
reconnection noise can be adequately included in a calibra-
tion, and that the calibrations performed with the new frame-
work have a lower variability than their classical counterparts,
without a significant increase in bias error.

The method also provides error confidence bounds on the
calibration. This is of extreme importance for the modelling of
the measured devices, as this allows validated models to be
obtained.

The method can easily adapt to very different sets of meas-
urement standards, that are exactly known, uncertain or even
unknown (but repeatable). As such, the method is one step
forward in the enabling of stochastically validated model
extraction for linear and nonlinear devices.
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