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QUANTUM INFORMATION TECHNOLOGY

‘qu-bit’what: encryption, quantum 
communications, quantum 
computing 
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quantum computing:
• factoring large numbers
• searching large databases
• large scale parallel
• polynomial scale with size
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quantum gate/’entanglement’

physical implementations of qu-bits:
• nuclear spins in liquids
• atoms in cavities
• superconducting junctions
• impurities in semiconductors
• quantum dots
• photon polarizations

--- solid state implementations needed 
for scalability

product states to ‘entangled’ states
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QU-BIT REQUIREMENTS - QUANTUM DOTS

I. define two state qu-bits III. couple qu-bits for gates
II. ‘address’ single qu-bits IV.  maintain coherence for operations

I. define two state qu-bit

excitons in quantum dotsspins in quantum dots
Β
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II.  set arbitrary state coherently

• (rf ‘nano’-magnetic field)
• spin flip Raman pulse

• pulsed band gap laser
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REQUIREMENTS OF PHYSICAL IMPLEMENTATIONS –
QUANTUM DOTS

III.  couple qu-bits coherently for gates
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possibilities discussed for dots

‘nanogates’ to control 
wavefunction overlap

photon exchange in 
microcavity

coupling between qu-bits most challenging for physical implementations



NANOSTRUCTURES AND QUANTUM INFORMATION

quantum information uses full analog wavefunction as ‘qu-bit’
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• solid state 
implementations 
sought for scalability 
and integration

• decoherence often a 
problem

I.  physical implementations for qu-bits:
spins in quantum dots excitons in quantum dots

0
ΕxΒ

II. physical implementations for quantum gates:

directly coupled cavity coupled

want controllable ‘entanglement’ of states of two qu-bits
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• single dot qu-bits

• coupled of dots

• microcavity coupling

• single dot qu-bits

• coupled of dots

• microcavity coupling



QUANTUM DOTS

‘artificial atoms’
self-organized dots
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‘interface dots’ lithographic dots



SINGLE SELF ASSEMBLED QUANTUM DOTS

single dot spectroscopy
insolated by lithography for optical 
studies

• Stranski-Krastanov InAs and 
In0.6Ga0.4As/GaAs dots grown by MBE

• doping of spins into dots
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EXCITON FINE STRUCTURE IN QD’s
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• sharp lines as potential qu-bits
• fine structure given by exciton spins 

couples to light in coherent optical control
• we have done extensive work done on 

optical properties e.g., PRL 82, 1748 (1999); 
PRB 65, 195315 (2002)
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SPIN DOPED QUANTUM DOTS

spins doped into QD’s in growth
• for qu-bits
• have done extensive work done on 
optical properties of trions e.g., PRL 82, 
1748 (1999); PRB 65, 195315 (2002)
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trion signature:
• no exchange energy
• spin of trion from hole
• symmetric spin 
splittings



EXCITON, TRION DEPHASING IN SINGLE DOTS

• resonant excitation and PL for homogeneous linewidths
• single In0.6Ga0.4As/GaAs QD’s with mesas
• ultranarrow lines < 3.5 µeV
• T2 ~ 1 nsec at 2K limited by emission
• linear T dependence different from bulk - consistent with 
theory from phonon scattering
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ENHANCED SPIN SPLITTINGS IN DOTS

• deep etched 
InGaAs/GaAs systems

• spin splittings enhanced 
over bulk x20, the largest 
known
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large spin splittings needed for 
thermal stability 



DEPHASING OF SPIN IN QD

• single spin dephasing in B in QD of 
critical interest

• few experiments, difficult to 
interpretation

• developed microscopic theory of 
intrinsic low T spin dephasing 

• from phonons mediated by spin orbit 
interaction

• critical role of new interface phonon 
coupling

total 

T=2K 
B= 2T
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• InGaAs self-organized QD’s
• intrinsic rates in dots slow ~ 10-3 sec-1

• strong increases with ~T11 and ~B5

• consistent with early experimental estimates 
< 200 µsec (Fujusawa, 2002)

• find dependences on system
• minimum for size ~ self organized dots

• spin dephasing time due to phonons in QD 
can be very long



ELECTRON SPIN ‘DEPHASING’ IN QD ~ 0.1 µsec

90% polarized nuclei

100% polarized nuclei

main spin ‘dephasing’ is from inhomogeneous 
hyperfine coupling to ~ 105 nuclei

• secular sharing of spin between electron and 
nuclei gives effect of dephasing

• dipolar nuclear spin diffusion ~ 10-4 sec
• electron dephasing by phonons ~ 10-3 -10-6 sec
• first quantitative results for realistic systems
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• polarized nuclei – slower ‘decay’ 
• depolarized nuclei – simple decay
• of possible interest for storage

T1 ~ (oscill fn)+(oscill fn)x(decay fn)

eΨ



• single dot qu-bits

• coupled of dots

• microcavity coupling

• single dot qu-bits

• coupled of dots

• microcavity coupling



VERTICALLY COUPLED QUANTUM DOTS

• vertically coupled self organized InGaAs/GaAs 
(Wuerzburg) and InAs/GaAs (NRC) grown by 
MBE

• alignment controlled by strains
• barriers width varied

d=4nm

d=16nm

symmetric

antisymmetric

typical electronic binding

samples: NRC Canada

• coherent coupling
• control of coupling
• two qu-bit gates



COUPLED QUANTUM DOTS

energies vs separation for InAs dotsPL vs sep’n: single InAs ‘molecules’

• energies split suggesting 
symmetric/antisymmetric states

• maximum splitting ~ 30 meV, 
enough to be stable at room T

structures
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ENTANGLED EXCITON STATES

with e,h tunneling from QD s-state optically
active

|0,0> |1,1>

|0,1> |1,0>

• coupling of QD excitons controlled by
- e, h tunneling
- Coulomb interactions

• developed detailed microscopic 
treatment 

• basis representation:
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COMPARISON

experiment calculations

(from p)

LC1:(a,b)

LC2:(a,b)
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good agreement between experiment and theory with coherent quantum states

supports coherent quantum couplingsupports coherent quantum coupling

(Science  291, 451 (2001))



DIAMAGNETIC SHIFT FOR COUPLED DOTS

diamagnetic shift measures size of quantum 
wavefunction perpendicular to field

diamagnetic shift in Voigt geometry

γ larger for molecule than for dot
implies quantum wavefunction extends over 
molecule

2BE ⋅=∆ γ
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DIRECT EVIDENCE OF COUPLINGS

• dots have different sizes, shapes, symmetries
• anti-crossings between states from two dots

• microscopic interpretations
• from detailed fine structure
• anticrossings from deviations 

from symmetry

experiment for several molecules theory
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Naval Research Laboratory

E-FIELD CONTROL OF COUPLINGS

• controlled coupling for two-qu bit gates
• seek to control interaction with one simple gate
• other proposals often require demanding 
nanometer fabrication

bottom  contact

 undoped GaAs

top  contact Al-mask
with holes

QD molecule
       layer0.65 mm

AlAs50 nm
50 nm

50 nm GaAs cap layer

    laser
excitation

|0,1>

en
er

gy

ho
le

s
el

ec
tro

ns

tilted-band case

E

(optical transitions)



Naval Research Laboratory

RESULTS FOR E-FIELD

E-field control of coupling splitting vs dot separation
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• coupling stronger for smaller separations
• larger field needed to see ‘splitting’

• low energy region of spectra
• leakage current at forward bias
• for reverse bias coupled state splits
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INTERPRETATION 

• low E - one mixed state optically active
• increasing E, two modes become optically active
• E-field decouples states 

E

(widths give oscillator strengths)

(E= 6.4 V)

(E = 0)
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also, control of emission with E
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2-QU BIT GATE FOR SPINS

one particle states• spins in coupled QD’s
• need to set qu-bits separately in realistic, 

closely spaced QD’s
• qu-bits from spin states of exact single 

particle functions, independent for large fields
−E

+E

• coupling in two particle states

J from separation between singlet and triplet states
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COUPLED DOTS BY SELECTIVE INTERDIFFUSION

• coupled QD’s formed by lithography and 
selective interdiffusion in II-VI’s

• gives wide range of sizes and control of 
quantum dot separation

Mn doped II-VI QD’s
• Mn selectively incorporated 
• spin splittings greatly enhanced by 

exchange interaction with Mn
• enhanced control of interdot coupling

Zn

B = 0         B > 0

|-1>

|+1>
g1 < g2

Mn
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COUPLING OF II-VI QD’s

9 nm separation 3 nm separation

E2

E1

magnetic field
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• single dot qu-bits

• coupled of dots

• microcavity coupling

• single dot qu-bits

• coupled of dots

• microcavity coupling
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CAVITY COUPLING OF DOTS

I.  fast, distant, frequency selective 
coupling

laser

needed: 
• cavities with large Q, small Vm
• QD: large oscillator strength  f 

• two mode cavity polariton 
(‘strong coupling’ ~ maintain coherence)

photon density of states
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II.  enhanced on-resonance emission 
(Purcell effect)

need:
large Q, small Vm

suppressed off-resonance emission

need: small off resonance density 
of states (‘leaky modes”)
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GaAs/AlAs

InGaAs QW

GaAs substrate

λ - cavity
GaAs/AlAs

LAYERED CAVITY (VCSEL)

- λ cavity ~ 250 nm 
- highly reflecting AlAs/GaAs Bragg 
mirrors 
- 5-7 nm In0.10Ga0.90As well as
optically active material

- confined discrete ‘vertical’ photon mode

- VCSEL reduces photon DOS to 2D

ω

k G1

Compare: 1D gap state

finite superlattice:
gap state not 
completely 
localized 
vertically
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ETCHED MICROCAVITY STRUCTURES

GaAs/AlAs

InGaAs QW

GaAs substrate

λ - cavity

• lithography (dry etching) gives lateral 
confinement ~ µm’s

• seek to modify photon density of states, 
mode energies and symmetries

• seek confined, discrete photon modes
• single photon mode of interest in e.g., low 

threshold lasers or photon qu-bits

SEM of cylindrical cavity

array of square cavities

vertical confinement: 
Bragg mirrors

vertical confinement: 
Bragg mirrors

horizontal confinement:
dielectric discontinuity

horizontal confinement:
dielectric discontinuity
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PHOTOLUMINESCENCE OF CAVITIES

‘confined’ photon frequenciesPL spectra vs. cavity size

• well separated, weakly coupled exciton-photon polaritons 
• photon frequencies increase with decreasing cavity size
• rich picture of cavity photons
• in quantitative agreement with calculations

solid lines - theory

excitonphoton GaAs/AlAs

InGaAs QW

GaAs substrate

λ - cavity

(PRL 78, 378 (1997))



PHOTON MODES

E-field of 0.4 micron cavity E-field of 1.2 micron cavity

• numerical ‘boundary element’ calcn’s for non-separable horizontal motion
• more fields outside small cavities/needed to explain expt
• small asymmetry from polarization degeneracy



2D s-like mode 2D p-like mode

SINGLE CAVITY MODES

- calcn’s in quantitative agreement with no fitable parameters
(no photon many-body effects, and small relatively fabrication damage)  

- picture of modes analogous to electronic states of quantum dots
- predictive power

(E-fields)

‘s’

‘p’



ENHANCEMENT/SUPPRESSION OF EMISSION
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ω

detailed control over of 
enhancement/suppression with 
detuning moving through modes

• InGaAs interface QD’s in microcavity
• gold coated to reduce leaky modes
• on resonance emission enhanced by ~x5
• off resonance emission reduced nearly x10 

order of magnitude control over 
emission times



COUPLED PAIRS OF CAVITIES

mode freq’s studied as function of L, W
structures

L

W

PL results – splittings

“p”

“s”

• seek to control mode symmetry, 
energy, volume

• single photon polarization states 
may be quantum information 
carriers



MODES OF “PHOTONIC MOLECULES”

bonding/antibonding modes

(σ−like orbitals from s modes)

(σ−like orbitals from px modes)

(π−like orbitals from py modes)

• coupled cavities 
have rich pattern 
of modes

• splittings 
controlled by 
cavity couplings

account quantitatively for L, W dependences

(PRL 81, 2582 (1998))



BAND GAPS IN CHAINS

k//θ

chains of cavities

PL spectra vs. chain wavevector

photon dispersion/band gaps

(PRL 83, 5374 (1999))

• band gaps out to 4th Brillouin zone
• theory is BEM for vector Maxwell eqns
• 3rd gap is ~ 0.035 meV



PHOTON BAND GAP STATES IN CHAINS

defect cavity states

solid lines theory

chain dispersion

• no other states at energy of gap states
• gap states potentially sharp/long lived
• of interest in lasers, LED’s, waveguides
• theory in good agreement with exp’t 



OTHER STRUCTURES



HIGH Q CAVITIES WITH SELF ASSEMBED QD’s

A number of slides describing our recent work on very small, high Q 
cavities were described in the talk but have been deleted until this 
work is written up



SUMMARY

quantum dots for qu-bits
- exciton
- spin qu-bits

direct coupling of QD qu-bits
- coherent coupling
- coupling controlled by E –field

microcavities
- control emission
- search for high Q cavities for strong coupling

quantum dots for qu-bits
- exciton
- spin qu-bits

direct coupling of QD qu-bits
- coherent coupling
- coupling controlled by E –field

microcavities
- control emission
- search for high Q cavities for strong coupling
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