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Abstract 
A technique using artificial neural networks to simultaneously identify OSNR, CD, and PMD from eye-diagram 
parameters is demonstrated both via simulation and experimentally in 40 Gb/s OOK and DPSK systems. A 
correlation coefficient of 0.99 is obtained for the testing data of both systems. 
 
Introduction 
High-performance optical networks are susceptible to 
various degrading effects that can change over time.  
Knowledge of the data channel degradation can be 
used to diagnose the network, repair the damage, 
drive a compensator/equalizer, or reroute traffic 
around a non-optimal link [1]. Therefore, it is valuable 
to monitor the channels for optical signal-to-noise 
ratio (OSNR), chromatic dispersion (CD), and 
polarization-mode dispersion (PMD). 

Optical performance monitoring has generally taken 
two different forms. The first type uses an optical 
technique to monitor a specific channel parameter 
that can be used to extract degradation information, 
such as using optical off-center bandpass filtering to 
monitor PMD [2]. The second type employs off-line 
digital signal processing of the received data signal, 
where various impairments will uniquely distort the 
data bits and eye diagram [3-7]. Using digital signal 
processing requires that the relationship is known 
between various non-ideal eye-diagram shapes and 
the underlying physical degradation effects [8]. 

In this paper, we use a neural-network-based 
approach to “train” the receivers in an optical network 
as to the relationship between OSNR, CD, and first-
order PMD (referred as differential group delay (DGD)) 
and the resultant shapes of the data channel’s eye 
diagrams. The coefficients of the neural network 
algorithm are derived in several iteration steps before 
live traffic is sent into the network. We first verify this 
approach for 40-Gbit/s OOK and DPSK data via 
simulation. Then we demonstrate this technique by 
obtaining eye diagrams from the experiment and 
doing the training and testing afterwards. The 
experimental results match well with the simulation. 

Concept and Simulations 
Artificial neural networks (ANNs) are information 
processing systems that learn from observations and 
generalize by abstraction [9]. ANNs consist of multiple 
layers of processing elements called neurons. Each 
neuron is linked to other neurons in neighboring 
layers by varying coefficients that represent the 
strengths of these connections, as shown in Fig.1 (a). 
ANNs learn the relationships among sets of input-
output data that are characteristic of the device or 
system under consideration. After the input vectors 

are presented to the input neurons and output vectors 
are computed, the ANN outputs are compared to the 
desired outputs and errors are calculated. Error 
derivatives are then calculated and summed for each 
weight until all of the training sets have been 
presented to the network. The error derivatives are 
used to update the weights for the neurons, and 
training continues until the errors reach prescribed 
values. In our case, the outputs are OSNR, CD, and 
PMD, and the inputs are Q-factor, eye-closure, jitter, 
and crossing amplitude. After training, another set of 
data is used to test the ANN. 
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(a) The structure of an artificial neural network (ANN) 
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(b) The degradation effects 

Fig.1 Concept of ANN and the impact of degradation effects. 

The ANN architecture used in this work is a feed-
forward, three-layer perceptron structure (MLP3) 
consisting of an input layer, a hidden layer, and an 
output layer. The hidden layer consists of 12 hidden 
neurons. We first verify the concept via simulation in 
40 Gb/s RZ-OOK and RZ-DPSK systems. The 
conjugate gradient method is used for training. The 
training data are obtained from the eye diagrams 
using one set of 125 samples (OSNR = 32, 28, 24, 
20, 16 dB; CD = 0, 15, 30, 45, 60 ps/nm; DGD = 0, 
2.5, 5, 7.5, 10 ps). Fig. 1 (b) shows some 
corresponding eye diagrams. Another set of 64 
samples (OSNR = 30, 26, 22, 18 dB; CD = 7.5, 22.5, 
37.5, 52.5 ps/nm; DGD = 1.25, 3.75, 6.25, 8.75 ps) is 
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used for testing. The ANN reports a correlation 
coefficient of 0.97 and 0.96 for OOK and DPSK 
systems, respectively. Fig. 2 (a) shows the training 
error. The test and ANN-model data are compared in 
Fig.2 (b) and (c).  
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40 Gb/s RZ-DPSK
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(a) Training error 
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(b) 40 Gb/s RZ-OOK testing results 
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(c) 40 Gb/s RZ-DPSK testing results 

Fig.2 Simulation results. 

Experiment and Results 
The experimental setup is shown in Fig. 3. 40 Gb/s 
DPSK or OOK signals are generated using two 
cascaded Mach-Zehnder modulators (MZM). The 
signal then goes through a tunable dispersion 
compensating module (TDCM) with +/- 400 ps/nm 
tuning range and 10 ps/nm tuning resolution, which 
serves as the CD emulator. The output of the TDCM 
is sent to an Erbium-doped fiber amplifier (EDFA) with 
a variable optical attenuator (VOA) in front to adjust 
the received OSNR. The noise-loaded signal is then 
filtered by a bandpass filter (BPF) with 1 nm 
bandwidth, and sent to the scope, where the eye 
diagram parameters are extracted.  
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Fig.3 Experimental setup. ANN: artificial neural network. 

In our experiment, we vary OSNR and CD for both 40 
Gb/s RZ-DPSK and RZ-OOK signals to get two sets 
of eye diagram parameters, including extinction ratio, 
eye opening factor and signal-to-noise ratio. One set 
with 20 samples (OSNR = 32, 28, 24, 20, 16 dB; CD 
= 0, 10, 30, 50 ps/nm) is sent to the ANN model for 
training and the other set with 12 samples (OSNR = 
30, 26, 22, 18 dB; CD = 10, 20, 40 ps/nm) is used for 
testing. The final training errors for the OOK and 
DPSK data are ~0.03 and ~0.04, respectively. Fig. 4 
shows testing results with the experimental data. For 
the RZ-DPSK signal, we use the eye of the 
destructive port of the delay line interferometer to 
extract information since we cannot estimate 
balanced eye diagrams with the scope. The ANN 
reports a correlation coefficient of 0.99 for both of the 
40 Gb/s RZ-OOK and RZ-DPSK systems. Fig. 4 
compares the testing and ANN-model data. 
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(a) 40 Gb/s RZ-OOK testing results 
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(b) 40 Gb/s RZ-DPSK testing results 

Fig.4 Experimental results. 
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