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Abstract—We develop a covariance matrix describing the II. TIMEBASE CORRECTION

uncertainty of a new timebase for waveform measurements . : :
determined with the National Institute of Standards and Tech- A generic system of the signal generator and sampling

nology’s timebase correction algorithm. This covariance matrix SyStem for measuring and correcting timebase errors is de-
is used with covariance matrices associated with other random scribed in [3]. We will describe the measurement apparatus
and systematic effects in the propagation of uncertainty for the that generates example waveforms used later in the paper to

measured waveform. illustrate the calculation of the uncertainty of the newdim
Index Terms—Covariance analysis, oscilloscopes, pulse mea-base. The measurement system and procedures are designed to
surements, waveform, uncertainty produce two quadrature sinusoids and a waveform of interest
having nearly identical timebase errors. The idea is thatef
I. INTRODUCTION can estimate the timebase errors from the known sinusoidal

signals, we can then apply our estimate to the waveform and

HNEIS_IIEIannaé Insl,tltut: of iﬁ\néj?rds ‘?Bd t.TeChmlogXompensate for timebase errors in its measurement.
( ) as developed a method for calipraling a wave- o y;; denote theth sample of thgith quadrature sinusoid
form at every time point inside the waveform epoch [1]. Th% — 1 and 2) measured at timg,. We use the following

callbratl_on also mclud_es a covariance matrix that_prosudm model [5] to describe the measurements of the two quadrature
uncertainty of each time point and the correlation betweer

: : : . : T inusoids:
different time points. This covariance matrix is constagtt o
from estimates of the random and systematic uncertaintigs. = +Z[ﬁjk’ cos(2mk fti;) + v;x sin(27k f1:;)] + €ij,

of the measurement process. A detailed description of how’ 1

a covariance matrix of the waveform is obtained, including Q)
both type A and type B evaluations of uncertainty, is given iwhere i = 1,2,...,n, n, is the harmonic order,f is
[1] and [2]. the fundamental frequency of the waveforneg;, is random

One of the uncertainties we account for is the uncertaingdditive noise, andv;, 3;x, v;» are the parameters of the
associated with the use of a new timebase in the waveformodel. We write
This new timebase is estimated by the NIST timebase cor- b= Tt by b

. . . . . ij % i i
rection procedure described in [3]. The timebase corractio
procedure corrects for jitter and timebase distortion ie tivhereT; = (i — 1)T; is the target time of each sample with
waveform by use of orthogonal distance regression [4] to fit being the target time interval between samplesjs the
measurements of two quadrature sinusoids acquired simgy¥stematic timebase distortion, ang} is the random jitter
taneously with the waveform being measured. We use theeach sampling time. With the assumption that the random
new timebase to interpolate the waveform to equally spackider is common to all the waveforms, in particular to both
time points. Consequently, the uncertainty of the inteafed Sinusoids, we have;; = 7, = 7;, and hencet;; = T; +
waveform depends on the uncertainty of the estimate of the+ 7ij = 1; + hi + 7 = T; + 6;. Thatis,6; = h; + 7
new timebase. In this paper we derive a formula for computing the timebase error at tini€;. With this simplification, we
the uncertainties of the new timebase. This uncertainty is fiewrite y;;, given in (1), as a functiod” of 7; + 6, and model
the form of a covariance matrix. parameter®d); = (a;, Bj1, .- Binys Vi1« -+ s Viny) AS

_The rest of the paper is organ_ized as follows._ Section |l yij = F(Ty + 6;; 6;) + €. 2)
briefly reviews the procedure for timebase correction. In-Se ) ) ) )
tion 11l we develop the formula for calculating the uncentgi  EStimates of timebase erross are readily available from -
covariance matrix of the new timebase. Section IV describf€ orthogonal distance regression fit of the model. In this
how to use the new timebase to interpolate the waveform afProach, the model in (2) is fit to the data with the assump-

calculate its uncertainty. We conclude with some summafin that both the dependeny;f) and the independent’)
remarks in Section V. variables are subject to errors. (The errorsyin and 7; are

¢;; and §;, respectively.) The least-squares estimator®) of
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wherew is the weight used in the least-squares procedure.b& the column vector of siz2(2n; + 1) + n containing the
detailed discussion on the use of the weight is given in [3]. Aeast-squares estimates of the parameters in (2).(Theth
implementation of the above procedure using a freely avlgla element of the Jacobian matrik is then given by

software ODRPACK [6] is discussed in [3] and is available at

[7]. Ji = dg; (11)

Once thed; are obtained, we use a d¢;’
Ti =T+ (4)  where ¢; is the jth element of¢. Since J;; = 0 for the
as the new timebase for the waveform that is measurfjlowing cases:
simultaneously with the two quadrature sinusoids. R
i = 1,...,nandg; € 0,

1. UNCERTAINTY OF THENEW TIMEBASE ESTIMATE i = n+1,...,2n and¢; eél,

In this section we derive the formula for calculating the i = 2n4+1,...,3nand¢; € 01,
covariance matrix of}he new timebasg which is equal to the i = 2n+1,...,3nand¢; € 92
covariance matrix of. We first state a result from nonlinear Y ! ’
regression analysis (e.g., see [8], p. 24) that we will use % have
derive the covariance matrix af. Suppose that we have
observations(x;, y;), ¢ = 1,...,n, that follow a nonlinear VWA, 0 VwH;,
model J = 0 VwAy wH; |,

yi = F(x;, 0) + €, %) 0 0 I,

where 0 is the unknown parameter am:jAare Zero-mean
random noise with constant variance. L@tbe the least-
squares estimate of that minimizes the residual sum of

where

A, nx (2n, + 1), is the Jacobian of; with respect

squares 5
n n tof,i=1,...,n,
Z[yi — F(x;, 0))? = Z[g(yi’ x;, 0))°. (6) Az, n x (2ny, + 1), is the Jacobian of;; with respect
i=1 i=1 t0927i:n+17...,2n,

Then, under appropriate regularity conditions and for daig H,, n x n, is the Jacobian of; with respect tod

the distribution off is approximately Gaussian, with meén . . . R
and covariance matrix PP y i=1,...,n, and is diagonal, sinc8g;/90; = 0

if i #J,

—1
_ T 2 ~
E@) - (J J) 75 @) H,, n x n, is the Jacobian of; with respect tod,
wheres? is the variance of;, J is the Jacobian matrix whose i=n+1,...,2n, and is diagonal,
(i, 7)th element is given by I,,, n x n, is the identity matrix.
99(yi, i, 0
Jij = %7 (8) The approximate covariance matrk of ¢ is then given by
J
T - . . . ~ —1
andJ is its transpose. The derivatives are evaluate@ at0 S — ( JT J) 52, (12)
andd; is the jth element off.

To apply the above result to our problem, we follow an

approach described in [9] and rewrite the residual sum yhere s is the residual variance of the least-squares fit and
squares in (3) as is given by R(601,602,6)/[n — 2(2n;, + 1)]. Since S is the
covariance matrix for all the parameter estimates of theehod

3n 9 . . LA .
PP PP and we desire only the covariance matrixégfwe partitionS
R(61,03,6) = Z [gi(91,9275)] , 9) as Y oofwe p
=1
. (S S
with S = ( Sor S ) , (13)

9 = Vuw i i i
o _ \ivhereASu, (2np+1) x (2np+1), is the covariance matrix for
Gitn = Vw |F(T;+0; 02) — yi2} v oi=1.m 9= (8, 0,)7; S12 = S3,, (2ns + 1) x n, is the covariance

matrix betweenf and é; and Ss,, n x n, iS the covariance

1 y - 5L7 / == 1’ ey . . S
Jit2n ¢ n matrix for §. Now
Let .
2 S ATA, 0 A{H,
o= 6 (10) = o ala Ay Ho
5 v H{A, H}A, H{H,+H}H,+1I,



Let

Q. - ATA, 0
H 0 AlTA,
_ ([ ATH, )
Q12 - ( 14%“13'2
Q21 = Q1T2
1
Q22 = H?H1+H§H2+EI7L

be the submatrices of”J partitioned according tc5;; in
(13). Note thatQ,, is diagonal since botiH; and H, are
diagonal.
With this partitioning, (12) becomes
) —1
62 LT\
S22 = 2 (@2 — @ Qi)' Q3

S S\ _d(Qu Qp
521 522 w
The above evaluation &85 involves the inversion of an xn

Q21 Q22
It can be shown that (e.g., [10], page 33)
matrix. This may not be acceptableif is large. However,

(14)

since Q,, is diagonal, this special structure can be exploﬂe’ﬂg L
to evaluateS,, more efficiently. Based on a result in [10]

(page 33), we have
—1
(sz - Q21Q1_11Q2T1) =Q — Q% QxP 'Q,Q5

where P = (Q,Q5,Q,, — Q,;). The calculation ofSs,
now involves the inversion of an x n diagonal matrixQ,,
which can be easily obtained, and the inversion &{2n;, +
1) x2(2np,+1) matrix P. In most of our applicationsy;, = 3,
thus we are required only to invertld x 14 symmetric matrix.

IV. INTERPOLATEDWAVEFORM AND ITS UNCERTAINTY

Given the waveform of interesfz;; i = 1,...,n}, and
its corresponding new timebasg;, we obtain m equally
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Schematic diagram of the measurement apparatus.

only two non-zero elements on each row bf and J ., this
simplifies the calculation oF;. Further simplification can be
realized if S, is diagonal.

We use the following experiment to illustrate the calcwati
of Z2; and S;. Figure 1 shows the measurement apparatus used
to generate the waveforms. The synthesized signal gemerato
produces 6.5408 GHz sine waves. The® 9¢/brid coupler
produces quadrature sinusoids that are measured on channel
1 and 2. The samplers in channels 1 and 2 have a nominal
bandwidth of 12.4 GHz and a root mean square additive
voltage noise (with no signal applied) of 0.2 mV. The prescal
produces a fast transition at nearly the maximum rate attwhic

spaced interpolated values of and their uncertainties. We the pulse generator will trigger (200 kHz). This transitiisn

use S; = 522 to denote the covariance matrix &f. We
assume that, < Ty < -+ < T),. (A programming note7;
and corresponding; must be sorted before evaluatirgy,.)

used to trigger the oscilloscope, and a replica of the ttiamsi
is delayed, passed through a limiting amplifier, and ther use
to trigger the pulse generator, which is measured simultane

Let Z; be theith linearly interpolated value on an equallyously on channel 3. The generated pulse has a nominal 10 %

spaced grid{z;; i = 1,...,m}, then
5 = ;z:;(xi—fl)—i-zl if 2, <T)
- ;;1771( —T) 42z if Ty <a; <Tjpy
= %(9@ - Tn,l) + 20 if Ty < i

Let S,

to 90 % transition duration of 14.9 ps and the sampler of
channel 3 has roughly a 70 GHz bandwidth with root mean
square additive noise of 1.1 mV (with no signal applied). The
internal architecture of the (commercially available) gding
oscilloscope [3] [11] is such that the trigger pulse stahnts t
timebase of the oscilloscope. After a programmed delay, the
timebase fires a single strobe pulse that is split to trigdler a
three of the samplers. Since the dominant timing errors én th

denote the covariance matrix of the original waveforrmeasurement are due to the process of triggering the tireebas

z;, which can be obtained from repeated measurementsapid to the timebase itself, characterization of the timingre
other means (see an example below). The covariance mairixthe sinusoids is a good estimate of the timing errors in

of the interpolated waveforn; is then given by
Sg%JtStJ$+JzSZJZ, (15)

where the(i, j)th elements of the Jacobian matricds and

the pulse generator. Additional sinusoids are measured6at 6
GHz and 6.5 GHz for the purpose of estimating the timebase
distortion [5] [12] and using it as an initial guess for the
timebase error. Criteria for selecting the frequencies taf t

J, are 82i/8Tj and 0z;/0z;, respectively. Since there aresinusoids are given in Section IV of [3].



In a typical experiment, waveforms are transferred to an ex-

ternal computer for post processing. We measure 100 quadra-

ture sinusoids and waveforms of interest at desired freqpuen
(6.5408 GHz in this example) on channels 1, 2, and 3. We

also measure 10 additional quadrature sinusoids at each of

the two different frequencies (6.6 GHz and 6.5 GHz in this
example). We first estimate the timebase distortion basexdl on
sinusoids and use it as an initial guess for the timebase. erro
Then, for each of the 100 sets of waveforms, we estimate the

timebase error based on the sinusoids measured on channels

1 and 2 and use the new timebase to interpolate the waveform
of interest measured on channel 3 to equally spaced time
points. The covariance matrix of the interpolated wavefesm
also obtained using (15). Consequently, 100 interpolategew
forms and associated covariance matriégsare calculated.
The mean of the 100 waveforms is taken to be the measured
waveform. We calculate two sources of uncertainty for the
mean waveform. The first source of uncertainty is based on
the “pooled” result of the 100 covariance matric8s. The
second source of uncertainty is the variation among the 100
interpolated waveforms. We combine these two uncertantie
to obtain the covariance matrix of the mean waveform.

The time-measurement window (waveform epoch) for the
experiment is 5.1 ns with 4096 samples. The waveform is
interpolated on 2048 evenly spaced time points from 0.02
to 5.02 ns. For illustration, we report only the results cor-
responding to the first set of measurements. In this set fd§.
measurements, the weight used in the timebase correction
procedure isw = 2.397. With this value ofw, the weighted
residual sums of squares correspondingetgthe first two
terms on the right-hand side of (3)) ard(the third term
on the right-hand side of (3)) are 0.0029 and 0.0027, respec-
tively. The residual standard errér in (12) is estimated by (3]
1/(0.0029 + 0.0027) /(4096 — 14) = 0.0012, where 14 is the
number of parameters ié; and 8, of (3).

Figure 2 displays the interpolated waveform (top panel) an%g}
its uncertainty (bottom panel). The uncertainties are thexse
root of the diagonal elements of the covariance maSix
which is obtained by use of (15) with, = 621, wheres,
is the estimate of the standard deviation of the distrilbutio

(2]

(6]
[7]

8]
of the random additive noise;; in (1) and is given by
1/0.0029/4082 = 0.00084 in this example. o]

Once the covariance matrix of the waveform is obtainegg;
it can be used, for example, to propagate uncertaintiesdn th
estimated pulse parameters of the waveform, such as the stat!
levels, amplitude, and transition duration [13].

12
V. CONCLUSION 12

In this paper we have presented an efficient method fﬁg]
calculating the covariance matrix of the new timebase of a
waveform. We showed how to use this covariance matrix to
propagate the uncertainty of an interpolated waveform with
evenly spaced time points.
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