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Abstract—We develop a covariance matrix describing the
uncertainty of a new timebase for waveform measurements
determined with the National Institute of Standards and Tech-
nology’s timebase correction algorithm. This covariance matrix
is used with covariance matrices associated with other random
and systematic effects in the propagation of uncertainty for the
measured waveform.

Index Terms—Covariance analysis, oscilloscopes, pulse mea-
surements, waveform, uncertainty

I. I NTRODUCTION

T HE National Institute of Standards and Technology
(NIST) has developed a method for calibrating a wave-

form at every time point inside the waveform epoch [1]. The
calibration also includes a covariance matrix that provides the
uncertainty of each time point and the correlation between
different time points. This covariance matrix is constructed
from estimates of the random and systematic uncertainties
of the measurement process. A detailed description of how
a covariance matrix of the waveform is obtained, including
both type A and type B evaluations of uncertainty, is given in
[1] and [2].

One of the uncertainties we account for is the uncertainty
associated with the use of a new timebase in the waveform.
This new timebase is estimated by the NIST timebase cor-
rection procedure described in [3]. The timebase correction
procedure corrects for jitter and timebase distortion in the
waveform by use of orthogonal distance regression [4] to fit
measurements of two quadrature sinusoids acquired simul-
taneously with the waveform being measured. We use the
new timebase to interpolate the waveform to equally spaced
time points. Consequently, the uncertainty of the interpolated
waveform depends on the uncertainty of the estimate of the
new timebase. In this paper we derive a formula for computing
the uncertainties of the new timebase. This uncertainty is in
the form of a covariance matrix.

The rest of the paper is organized as follows. Section II
briefly reviews the procedure for timebase correction. In Sec-
tion III we develop the formula for calculating the uncertainty
covariance matrix of the new timebase. Section IV describes
how to use the new timebase to interpolate the waveform and
calculate its uncertainty. We conclude with some summary
remarks in Section V.
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II. T IMEBASE CORRECTION

A generic system of the signal generator and sampling
system for measuring and correcting timebase errors is de-
scribed in [3]. We will describe the measurement apparatus
that generates example waveforms used later in the paper to
illustrate the calculation of the uncertainty of the new time-
base. The measurement system and procedures are designed to
produce two quadrature sinusoids and a waveform of interest
having nearly identical timebase errors. The idea is that ifwe
can estimate the timebase errors from the known sinusoidal
signals, we can then apply our estimate to the waveform and
compensate for timebase errors in its measurement.

Let yij denote theith sample of thejth quadrature sinusoid
(j = 1 and 2) measured at timetij . We use the following
model [5] to describe the measurements of the two quadrature
sinusoids:

yij = αj +

nh
∑

k=1

[βjk cos(2πkftij) + γjk sin(2πkftij)] + ǫij ,

(1)
where i = 1, 2, . . . , n, nh is the harmonic order,f is
the fundamental frequency of the waveforms,ǫij is random
additive noise, andαj , βjk, γjk are the parameters of the
model. We write

tij = Ti + hi + τij ,

whereTi = (i − 1)Ts is the target time of each sample with
Ts being the target time interval between samples,hi is the
systematic timebase distortion, andτij is the random jitter
in each sampling time. With the assumption that the random
jitter is common to all the waveforms, in particular to both
sinusoids, we haveτi1 = τi2 = τi, and hencetij = Ti +
hi + τij = Ti + hi + τi = Ti + δi. That is, δi = hi + τi

is the timebase error at timeTi. With this simplification, we
rewrite yij , given in (1), as a functionF of Ti + δi and model
parametersθj = (αj , βj1, . . . βjnh

, γj1, . . . , γjnh
) as

yij = F (Ti + δi; θj) + ǫij . (2)

Estimates of timebase errorsδi are readily available from
the orthogonal distance regression fit of the model. In this
approach, the model in (2) is fit to the data with the assump-
tion that both the dependent (yij) and the independent (Ti)
variables are subject to errors. (The errors inyij and Ti are
ǫij and δi, respectively.) The least-squares estimators ofθ1,
θ2, andδ = (δ1, . . . , δn), denoted bŷθ1, θ̂2, and δ̂, are the
solution of the minimization problem (with respect toθ1, θ2,
andδ) of the following function:

R(θ1,θ2, δ) =

n
∑

i=1

{

w [F (Ti + δi; θ1) − yi1]
2
+

w [F (Ti + δi; θ2) − yi2]
2

+ δ2
i

}

, (3)
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wherew is the weight used in the least-squares procedure. A
detailed discussion on the use of the weight is given in [3]. An
implementation of the above procedure using a freely available
software ODRPACK [6] is discussed in [3] and is available at
[7].

Once theδ̂i are obtained, we use

T̂i = Ti + δ̂i (4)

as the new timebase for the waveform that is measured
simultaneously with the two quadrature sinusoids.

III. U NCERTAINTY OF THE NEW TIMEBASE ESTIMATE

In this section we derive the formula for calculating the
covariance matrix of the new timebaseT̂i, which is equal to the
covariance matrix of̂δ. We first state a result from nonlinear
regression analysis (e.g., see [8], p. 24) that we will use to
derive the covariance matrix of̂δ. Suppose that we haven
observations(xi, yi), i = 1, . . . , n, that follow a nonlinear
model

yi = F (xi, θ) + ǫi, (5)

where θ is the unknown parameter andǫi are zero-mean
random noise with constant variance. Letθ̂ be the least-
squares estimate ofθ that minimizes the residual sum of
squares

n
∑

i=1

[yi − F (xi, θ̂)]2 =
n

∑

i=1

[g(yi, xi, θ̂)]2. (6)

Then, under appropriate regularity conditions and for large n,
the distribution ofθ̂ is approximately Gaussian, with meanθ

and covariance matrix

Σˆθ
=

(

JT J
)

−1

σ2, (7)

whereσ2 is the variance ofǫi, J is the Jacobian matrix whose
(i, j)th element is given by

Jij =
∂g(yi, xi, θ)

∂θj

, (8)

andJT is its transpose. The derivatives are evaluated atθ = θ̂

andθj is the jth element ofθ.
To apply the above result to our problem, we follow an

approach described in [9] and rewrite the residual sum of
squares in (3) as

R(θ̂1, θ̂2, δ̂) =

3n
∑

i=1

[

gi(θ̂1, θ̂2, δ̂)
]2

, (9)

with

gi =
√

w
[

F (Ti + δ̂i; θ̂1) − yi1

]

, i = 1, . . . , n

gi+n =
√

w
[

F (Ti + δ̂i; θ̂2) − yi2

]

, i = 1, . . . , n

gi+2n = δ̂i, i = 1, . . . , n.

Let

φ =





θ̂1

θ̂2

δ̂



 (10)

be the column vector of size2(2nh + 1) + n containing the
least-squares estimates of the parameters in (2). The(i, j)th
element of the Jacobian matrixJ is then given by

Jij =
∂gi

∂φj

, (11)

where φj is the jth element ofφ. Since Jij = 0 for the
following cases:

i = 1, . . . , n andφj ∈ θ̂2,

i = n + 1, . . . , 2n andφj ∈ θ̂1,

i = 2n + 1, . . . , 3n andφj ∈ θ̂1,

i = 2n + 1, . . . , 3n andφj ∈ θ̂2,

we have

J =





√
wA1 0

√
wH1

0
√

wA2

√
wH2

0 0 In



 ,

where

A1, n × (2nh + 1), is the Jacobian ofgi with respect

to θ̂1, i = 1, . . . , n,

A2, n × (2nh + 1), is the Jacobian ofgi with respect

to θ̂2, i = n + 1, . . . , 2n,

H1, n × n, is the Jacobian ofgi with respect tôδ,

i = 1, . . . , n, and is diagonal, since∂gi/∂δ̂j = 0

if i 6= j,

H2, n × n, is the Jacobian ofgi with respect tôδ,

i = n + 1, . . . , 2n, and is diagonal,

In, n × n, is the identity matrix.

The approximate covariance matrixS of φ is then given by

S =
(

JT J
)

−1

σ̂2, (12)

where σ̂2 is the residual variance of the least-squares fit and
is given by R(θ̂1, θ̂2, δ̂)/[n − 2(2nh + 1)]. Since S is the
covariance matrix for all the parameter estimates of the model
and we desire only the covariance matrix ofδ̂, we partitionS

as

S =

(

S11 S12

S21 S22

)

, (13)

whereS11, (2nh +1)×(2nh +1), is the covariance matrix for
θ̂ = (θ̂1 θ̂2)

T ; S12 = ST
21, (2nh + 1) × n, is the covariance

matrix between̂θ and δ̂; and S22, n × n, is the covariance
matrix for δ̂. Now

JT J

w
=





AT
1 A1 0 AT

1 H1

0 AT
2 A2 AT

2 H2

HT
1 A1 HT

2 A2 HT
1 H1 + HT

2 H2 + 1

w
In




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Let

Q11 =

(

AT
1 A1 0

0 AT
2 A2

)

Q12 =

(

AT
1 H1

AT
2 H2

)

Q21 = QT
12

Q22 = HT
1 H1 + HT

2 H2 +
1

w
In

be the submatrices ofJT J partitioned according toSij in
(13). Note thatQ22 is diagonal since bothH1 and H2 are
diagonal.

With this partitioning, (12) becomes
(

S11 S12

S21 S22

)

=
σ̂2

w

(

Q11 Q12

Q21 Q22

)

−1

.

It can be shown that (e.g., [10], page 33)

S22 =
σ̂2

w

(

Q22 − Q21Q
−1

11 QT
21

)

−1

. (14)

The above evaluation ofS22 involves the inversion of ann×n
matrix. This may not be acceptable ifn is large. However,
sinceQ22 is diagonal, this special structure can be exploited
to evaluateS22 more efficiently. Based on a result in [10]
(page 33), we have
(

Q22 − Q21Q
−1

11 QT
21

)

−1

= Q−1

22 − Q−1

22 Q21P
−1QT

21Q
−1

22 ,

where P = (QT
21Q

−1

22 Q21 − Q11). The calculation ofS22

now involves the inversion of ann × n diagonal matrixQ22,
which can be easily obtained, and the inversion of a2(2nh +
1)×2(2nh+1) matrix P . In most of our applications,nh = 3,
thus we are required only to invert a14×14 symmetric matrix.

IV. I NTERPOLATEDWAVEFORM AND ITS UNCERTAINTY

Given the waveform of interest{zi; i = 1, . . . , n}, and
its corresponding new timebasêTi, we obtain m equally
spaced interpolated values ofzi and their uncertainties. We
use St = S22 to denote the covariance matrix of̂Ti. We
assume that̂T1 < T̂2 < · · · < T̂n. (A programming note,̂Ti

and correspondingzi must be sorted before evaluatingS22.)
Let ẑi be the ith linearly interpolated value on an equally
spaced grid{xi; i = 1, . . . ,m}, then

ẑi =
z2 − z1

T̂2 − T̂1

(xi − T̂1) + z1 if xi ≤ T̂1

=
zj+1 − zj

T̂j+1 − T̂j

(xi − T̂j) + zj if T̂j ≤ xi ≤ T̂j+1

=
zn − zn−1

T̂n − T̂n−1

(xi − T̂n−1) + zn−1 if T̂n ≤ xi.

Let Sz denote the covariance matrix of the original waveform
zi, which can be obtained from repeated measurements or
other means (see an example below). The covariance matrix
of the interpolated waveform̂zi is then given by

Sẑ ≈ J tStJ
T
t + JzSzJ

T
z , (15)

where the(i, j)th elements of the Jacobian matricesJ t and
Jz are ∂ẑi/∂T̂j and ∂ẑi/∂zj , respectively. Since there are
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Fig. 1. Schematic diagram of the measurement apparatus.

only two non-zero elements on each row ofJ t and Jz, this
simplifies the calculation ofSẑ. Further simplification can be
realized ifSz is diagonal.

We use the following experiment to illustrate the calculation
of ẑi andSẑ. Figure 1 shows the measurement apparatus used
to generate the waveforms. The synthesized signal generator
produces 6.5408 GHz sine waves. The 90◦ hybrid coupler
produces quadrature sinusoids that are measured on channels
1 and 2. The samplers in channels 1 and 2 have a nominal
bandwidth of 12.4 GHz and a root mean square additive
voltage noise (with no signal applied) of 0.2 mV. The prescaler
produces a fast transition at nearly the maximum rate at which
the pulse generator will trigger (200 kHz). This transitionis
used to trigger the oscilloscope, and a replica of the transition
is delayed, passed through a limiting amplifier, and then used
to trigger the pulse generator, which is measured simultane-
ously on channel 3. The generated pulse has a nominal 10 %
to 90 % transition duration of 14.9 ps and the sampler of
channel 3 has roughly a 70 GHz bandwidth with root mean
square additive noise of 1.1 mV (with no signal applied). The
internal architecture of the (commercially available) sampling
oscilloscope [3] [11] is such that the trigger pulse starts the
timebase of the oscilloscope. After a programmed delay, the
timebase fires a single strobe pulse that is split to trigger all
three of the samplers. Since the dominant timing errors in the
measurement are due to the process of triggering the timebase
and to the timebase itself, characterization of the timing errors
in the sinusoids is a good estimate of the timing errors in
the pulse generator. Additional sinusoids are measured at 6.6
GHz and 6.5 GHz for the purpose of estimating the timebase
distortion [5] [12] and using it as an initial guess for the
timebase error. Criteria for selecting the frequencies of the
sinusoids are given in Section IV of [3].
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In a typical experiment, waveforms are transferred to an ex-
ternal computer for post processing. We measure 100 quadra-
ture sinusoids and waveforms of interest at desired frequency
(6.5408 GHz in this example) on channels 1, 2, and 3. We
also measure 10 additional quadrature sinusoids at each of
the two different frequencies (6.6 GHz and 6.5 GHz in this
example). We first estimate the timebase distortion based onall
sinusoids and use it as an initial guess for the timebase error.
Then, for each of the 100 sets of waveforms, we estimate the
timebase error based on the sinusoids measured on channels
1 and 2 and use the new timebase to interpolate the waveform
of interest measured on channel 3 to equally spaced time
points. The covariance matrix of the interpolated waveformis
also obtained using (15). Consequently, 100 interpolated wave-
forms and associated covariance matricesSẑ are calculated.
The mean of the 100 waveforms is taken to be the measured
waveform. We calculate two sources of uncertainty for the
mean waveform. The first source of uncertainty is based on
the “pooled” result of the 100 covariance matricesSẑ. The
second source of uncertainty is the variation among the 100
interpolated waveforms. We combine these two uncertainties
to obtain the covariance matrix of the mean waveform.

The time-measurement window (waveform epoch) for the
experiment is 5.1 ns with 4096 samples. The waveform is
interpolated on 2048 evenly spaced time points from 0.02
to 5.02 ns. For illustration, we report only the results cor-
responding to the first set of measurements. In this set of
measurements, the weight used in the timebase correction
procedure isw = 2.397. With this value ofw, the weighted
residual sums of squares corresponding toǫ (the first two
terms on the right-hand side of (3)) andδ (the third term
on the right-hand side of (3)) are 0.0029 and 0.0027, respec-
tively. The residual standard error̂σ in (12) is estimated by
√

(0.0029 + 0.0027)/(4096 − 14) = 0.0012, where 14 is the
number of parameters inθ1 andθ2 of (3).

Figure 2 displays the interpolated waveform (top panel) and
its uncertainty (bottom panel). The uncertainties are the square
root of the diagonal elements of the covariance matrixSẑ,
which is obtained by use of (15) withSz = σ̂2

ǫ I, where σ̂ǫ

is the estimate of the standard deviation of the distribution
of the random additive noiseǫij in (1) and is given by
√

0.0029/4082 = 0.00084 in this example.
Once the covariance matrix of the waveform is obtained,

it can be used, for example, to propagate uncertainties in the
estimated pulse parameters of the waveform, such as the state
levels, amplitude, and transition duration [13].

V. CONCLUSION

In this paper we have presented an efficient method for
calculating the covariance matrix of the new timebase of a
waveform. We showed how to use this covariance matrix to
propagate the uncertainty of an interpolated waveform with
evenly spaced time points.
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