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Least-Squares Estimation of Time-Base
Distortion of Sampling Oscilloscopes

C. M. Wang, Paul D. Hale, and Kevin J. Coakley

Abstract—We present an efficient least-squares algorithm for
estimating the time-base distortion of sampling oscilloscopes. The
method requires measurements of signals atmultiple phases and
frequencies. The method can accurately estimate the order of
the harmonic model that is used to account for the amplitude
nonlinearity of the sampling channel. We study several practical
problems related to the time-base distortion estimation, such
as the effect of averaging and sample size requirements. We
also compare the relative performance of various methods for
estimating time-base distortion using simulated and measured
data.

Index Terms—Curve fitting, harmonic distortion, least-squares
methods, mean-square error methods, timing jitter.

I. INTRODUCTION

H IGH-SPEED sampling oscilloscopes have been used for
many years as qualitative tools for measuring tempo-

ral waveforms. For these oscilloscopes to serve as accurate
metrological instruments over their entire bandwidth, several
effects must be compensated for [1], [2]. These effects include
time-base distortion (TBD), timing jitter, timing drift [3], [4],
additive noise, and impedance mismatch [5]. Our work focuses
on characterizing TBD in high speed digital sampling oscillo-
scopes. If left uncorrected, TBD can cause significant errors in
pulse width, step transition, and time interval measurements.
Discontinuities in the TBD can severely distort a short pulse
waveform. Such discontinuities must be detected and avoided
in even the crudest measurements. After estimation of the
TBD, the measured waveform must be adjusted accordingly
[6] to insure high accuracy results.

The model of a discrete time signal is given by

where the th sample is a function of actual time of sampling
plus the additive noise The actual time can be written

as

where is the ideal sample time and is the sampling
interval. Deviations between the ideal and actual times have
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two components: a deterministic part called TBD and a
random component called jitter.

A number of methods have been developed to estimate
Earlier methods, such as the “sinefit” [7], [8] and “analytic sig-
nal” [9], use sine-wave data of a known frequency with single
or multiple starting phases to estimate the TBD. Stenbakken
and Deyst [10] compare the performance of these two methods
by simulations. Their results show that the sinefit method
performs better than the analytic-signal method when the
TBD has discontinuities, whereas the analytic-signal method
performs better when the TBD is slowly changing. In addition,
the analytic-signal method performs better when the TBD is
large. For implementation, the sinefit method requires multiple
waveforms of different starting phases to carry out the analysis,
while the analytic-signal method requires only one waveform.
The analytic-signal method, however, needs to drop data near
the ends of the record, so the TBD at those samples can not
be obtained.

Recent work [11], [12] on TBD estimation has been concen-
trated on least-squares methods that use waveforms ofmultiple
phases and frequencies. The advantage of such an approach is
that there are enough data to accurately estimate the TBD (in-
cluding discontinuities). It also allows the harmonic distortions
to be estimated and separated from the TBD. In this paper,
we present an efficient least-squares algorithm for estimating
the time-base and other distortionssimultaneously. We study
several practical problems related to TBD estimation, such
as the effect of averaging and sample size requirements. We
also compare the relative performance of various methods for
estimating TBD using simulated and measured data.

II. L EAST-SQUARES METHOD

The model of the waveforms of multiple phases and fre-
quencies is given by

where is the measured signal at time (the th actual
sample time of the th experiment), is the frequency used
in the th experiment, and and are the amplitudes
of the th harmonic of the th experiment. The number of
harmonics is assumed to be finite. The additive noisesare
assumed to be independently and identically distributed (iid)
with zero means and standard deviations The model

U.S. Government work not protected by U.S. Copyright.



WANG et al.: TIME-BASE DISTORTION OF SAMPLING OSCILLOSCOPES 1325

allows different additive noise standard deviations for different
experiments. The model also assumes thatis given by

where and are as defined before and are the random
jitters and assumed to be iid (and independent of with
zero means and standard deviations There will be

experiments with samples for each experiment; that is,
and

Let

be the column vector of the unknown parameters of the model.
The number of unknowns is Define

(1)

and

Then the LS estimate of denoted by is the solution of

(2)

A Gauss-Newton type of iterative procedure can be used
to solve (2). If the procedure is implemented directly, it
would require operations at each iterative step. This
is not acceptable for a large (in our problems, .
The model in (1) has a special structure, however, that can
be exploited to obtain an algorithm which requires only

operations at each step. The detailed derivation of the
algorithm is given in Appendix A.

In the subsequent discussion, all the TBD estimation is
performed using the LS method.

III. EFFECTS OFAVERAGING

The choice of input frequencies is important in TBD esti-
mation. Guidelines are given in [12] for selecting good sets
of frequencies. In practice, a pair of appropriate frequencies
is used. At each of the two frequencies, signals are sampled
at different starting phases. In general, the phases measured
and the number of phases used need not be the same at
each frequency. Since the estimation is usually carried out
offline, a large number of waveforms may be available. Due
to computational and other constraints, we may not be able to
use all the data at once to estimate the TBD; we need to do
“averaging.” To illustrate, suppose two frequencies are chosen.
For each frequency, six waveforms using different starting
phases are sampled. These 12 waveforms are labeled 1 to 12.
Four possible ways can then be used to estimate the TBD. We
could use all the data at once, or use waveforms, say, 1, 2, 3, 7,
8, and 9 to estimate the TBD and average it with another TBD
estimate obtained from the remaining waveforms. Similarly,

we can average TBD estimates obtained from three sets of
four waveforms, or six sets of two waveforms. We denote
these methods by “1/12,” “2/6,” “3/4,” and “6/2.” The notation
“ ” means that the TBD estimate is the average of
individual TBD estimates, each of which was obtained using

waveforms with half from one frequency and another half
from another frequency. To get a unique solution to (2), we
must impose a constraint on the parameters. For example,
we might require that or That is,
the LS TBD estimates are unique only up to an arbitrary
translation. This condition also exists for other methods. For
example, the TBD estimates obtained using the analytic–signal
method would differ by an arbitrary translation due to different
starting phases. Thus, TBD estimates must be shifted to a
common level before averaging. A commonly used criterion is
to minimize the “distance” among the shifted TBD estimates.
Let be the TBD estimate obtained from
the th set of waveforms, We want to find
constants that minimize

where is an appropriate distance metric. Two
possible distance metrics are considered in Appendix B to
obtain Once these “offset adjustments” are found, each
is then shifted accordingly, and the final TBD estimatecan
be obtained as the mean of the shifted that is,

In simulation experiments, we study the effects of averaging.
TBD can take on different forms for different oscilloscopes
[11]. The simulation parameters used here are closely related
to those we observe in our laboratory. We used an 8 ns time
window with 4096 samples . The nominal TBD

is shown in Fig. 1. It has discontinuities at 4 ns intervals
and includes some quadratic and sinusoidal modulation. Its
exact form is given in Appendix C. We assumed that there
was no harmonic distortion The two frequencies
used were 9.75 GHz and 10.25 GHz. At each frequency, 12
phases, were used to generate
a total of 24 waveforms. The additive and jitter error standard
deviations used were 1% of the amplitude and 80% of the
sample period, respectively. Based on these 24 waveforms, six
averaging methods, 12/2, 6/4, 4/6, 3/8, 2/12, and 1/24, were
employed to estimate The root–mean–square (RMS) error
of the estimate for each method is calculated as (adjusted
for the arbitrary translation)

(3)

The process was repeated 100 times. Fig. 2 plots the 100 RMS
errors of TBD estimates for each method.

Fig. 2 indicates that the largest gain in performance im-
provement was obtained when we increased the number of
waveforms in each frequency from 1 to 2 signals nearly in
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Fig. 1. The time-base distortion used in the simulation.

Fig. 2. RMS errors of the TBD estimate for the six averaging methods. The
line connects the means of the 100 RMS errors.

quadrature. Moreover, increasing the number of waveforms
further in averaging does not significantly improve the perfor-
mance. For the computational speed, the “1/24” method was,
on average, 4.8 times slower than the “6/4” method. Similar
results were obtained when the actual and assumed harmonic
order was 3 Based on these results, we conclude
that when multiple sets of waveforms are used to estimate the
TBD by averaging, it is sufficient to have only 4 waveforms.
Each set contains two signals in quadrature from each of the
two frequencies.

Having decided to use the method the next question
that comes immediately to mind is what is the proper value of

Fig. 3. RMS errors of the TBD estimate forM=4 method. The horizontal
axis is the value ofM:

to use in order to obtain an adequate TBD estimate. Both
simulated and real data were used to answer this question. We
first generated 500 sets of four waveforms using the same
simulation parameters stated above. Fig. 3 plots the RMS
error of the TBD estimate as a function of on the log
scale. That is, Fig. 3 plots the value of against the value
of used in the method to calculate It shows
that the RMS error drops precipitously as increases from
one to ten and levels off when is greater than 200. We
also measured 500 sets of four waveforms. Each data set of
four waveform measurements contained a 9.75 GHz signal
and nearly quadrature signal, and a 10.25 GHz signal and
nearly quadrature signal. The signals were generated using an
inexpensive 100 kHz—3.2 GHz synthesized signal generator
multiplied by a multiplier. The resulting signal was filtered
and amplified to give spurious harmonics of the input signal
less than 60 dB (re: carrier) and spurious harmonics of the
output signal dB (re: carrier). The oscilloscope was
triggered using the fundamental signal generated by the signal
generator and the relative phase of the measured waveform
was set by changing the trigger level of the oscilloscope. The
additive noise standard deviation was estimated to be about
1% of the amplitude, and jitter noise standard deviation was
between 740 and 900 fs depending on the trigger level (phase)
and frequency. For the measured data, since the TBD is not
known and hence cannot be computed, a different criterion
must be used. The criterion is the standard deviation of the
TBD estimate, which is defined as

Fig. 4 plots the standard deviation of the TBD estimate for
the measured data. The number on the top of each subplot is
the value of used in TBD estimation. Fig. 4 shows that
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Fig. 4. Standard deviations of TBD estimates forM=4 method. The number of the top of each subplot is the value ofM:

the range of standard deviations decreases drastically as
increases from 2 to 10 but the standard deviation remains fixed
at about 0.7 ps up to Both studies suggest that a
reasonable starting value of to use in TBD estimation is
about 20. Incremental and sequential improvement on TBD
estimation can be made as more data become available. The

method with a moderate value of enables us to obtain
the uncertainty of the TBD estimate.

IV. SELECTION OF HARMONIC ORDER

A measured signal is usually contaminated with harmonics
from the signal generator and distortion in the oscilloscope.
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Fig. 5. Residual errors in TBD and in amplitude versus the harmonic order
used in LS fits. The model withh = 4 was used in simulation.

Consequently, knowledge of the correct harmonic order is
important for accurate TBD estimation. The proper harmonic
order can be easily determined by examining the residuals
from the LS fit. To illustrate, we first use simulated data.
Twenty sets of four waveforms (20/4) with were gener-
ated. The amplitudes corresponding to the second, third, and
fourth harmonics were approximately 14, 7, and 3.5% of the
fundamental amplitude. The rest of the simulation parameters
were the same as those used before. Different harmonic orders,
from one to nine, were used in TBD estimation. Two residual
errors from the LS fit corresponding to different harmonic
orders were calculated. The first is the residual error in TBD,

of (3). The second is the residual error in amplitude.
The residual error in amplitude from the LS fit based on 4
waveforms and a harmonic model of order is given by

where is the measured signal and is the LS predicted
signal. The denominator is the number of degrees of freedom,
which is the difference between the number of measurements

and the number of parameters fitted in the model.
For 20/4 method, we calculated the average residual error in
amplitude as

where the summation is carried out for the 20 individual
Fig. 5 plots values of and as functions of the

harmonic order used in LS fits. It shows that the correct
harmonic order is the value of where its corresponding

or starts leveling off; that is, or does not change
significantly. In this case, We applied this simple
technique on the measured data mentioned in the previous

Fig. 6. Residual error in amplitude versus the harmonic order used in LS
fits for ten data sets.

section. Fig. 6 plots the value of is not available for
real data) as a function of for the first 10 (out of 500) data
sets. It suggests that the proper order to use is 3.

V. COMPARISON OF METHODS

In this section, we compare the performance of the LS
method with other known methods. We first compare the LS
method with another least-squares based method proposed
recently by Stenbakken and Deyst [12]. Their method, also
requiring waveforms of multiple phases and frequencies, uses
a two-stage approach. Specifically, the method first estimates
amplitude parameters and of (1) for fixed TBD

using the ordinary least squares and then estimatesfor
fixed amplitude parameters using the weighted nonlinear least
squares. These two steps are repeated until results converge.
An advantage of this approach is that it requires fewer op-
erations at each iterative step than the LS method which
estimates all the parameters simultaneously. The comparison
was done by simulation. We employed the same simulation
parameters used before for (Fig. 1), frequencies (9.75 and
10.25 GHz), starting phases (0 and 90), and elapsed time
(8 ns with ). We used three additive error
standard deviations of the 0.5, 1, and 2% of the amplitude, and
three jitter error standard deviations of the 20, 50, and 80% of
the sample period. Optimal weighting schemes were used in
both methods. Fig. 7 plots the ratio of the RMS error in TBD
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Fig. 7. Ratios of residual error in TBD of the LS method to the Sten-
bakken–Deyst method. The horizontal axis is the value ofM used inM=4:
The top and bottom numbers in each subplot are the value of additive and
jitter error standard deviations.

of the LS method to the Stenbakken–Deyst method as
a function of the number of data sets averaged in
for the 9 combinations of additive and jitter error standard
deviations. The top and bottom numbers in each subplot are,
respectively, the value (in percentage) of additive and jitter
error standard deviations.

Fig. 7 indicates that, for simulation parameters considered,
the LS methoduniformly produces smaller RMS errors than
does the Stenbakken–Deyst method. The difference can be as
much as 14% for some cases. There seems to be no discernible
correlation between relative performance and additive/jitter
error standard deviation. For the execution speed, the Sten-
bakken–Deyst method runs about 45% faster than the LS
method at each iterative step. In our implementation, however,
the Stenbakken–Deyst method generally requires more itera-
tions than the LS method to converge with the same stopping
criteria, the total execution time for both methods is very close.

Next, we compare the LS method with the analytic-signal
method, a nonleast-squares method. Since the analytic-signal
method does not perform well with the presence of discon-
tinuities in the TBD or harmonic distortion, we used
and a 2 ns window between times 3 ns and 5
ns in Fig. 1) where is smoothly varying. In implementing
the analytic-signal method, 8% of the samples from either
end were dropped. Fig. 8 plots the ratio of the RMS error

Fig. 8. Ratios of residual error in TBD of the LS method to the ana-
lytic-signal method. The horizontal axis is the value ofM used inM=4:
The top and bottom numbers in each subplot are the value of additive and
jitter error standard deviations.

in TBD of the LS method to the analytic-signal method as a
function of for the 9 combinations of additive and jitter
error standard deviations. It shows that the analytic-signal
method can be competitive when the jitter is large andis
small (the break-even point for is that is,
the LS method would outperform the analytic-signal method
when ). However, when the jitter is small, or the TBD
has discontinuities, or there is harmonic distortion, or there are
many waveforms available, the LS method is preferable.

VI. CONCLUSIONS

We described an efficient least-squares algorithm for esti-
mating the TBD of sampling oscilloscopes based on wave-
forms of multiple phases and frequencies. The method can
accurately estimate the TBD even when it has discontinuities.
It can also determine the correct order of the harmonic model.
We showed that the TBD estimate can be updated and its
performance improved sequentially as more measurements
become available. The method compares favorably with other
procedures. We applied the method to simulated and real data.

APPENDIX A
DERIVATION OF THE LS ALGORITHM

The iterative procedure starts with an initial guessand
produces a sequence which, we hope, converges to
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The th iterate is given by

where is the so-called Gauss-Newton step and is obtained
from the solution of the LS problem

(4)

where is the 2-norm,

and is the Jacobian matrix of the
vector-valued function evaluated at That is shown in
the first equation at the bottom of the page.

The solution of (4) involves a QR decomposition of matrix
For a matrix the QR decomposition requires

operations [13]. Since is (and
it requires operations to compute

its QR decomposition. The matrix has a special structure,
however, that can be exploited to solve (4) more efficiently.
This is due to the fact that

if

In particular, let be the matrix containing the first
columns of and the remaining columns, that is,

Then

...
...

...
...

where

and (see the second equation shown at the bottom of the page)
where

To save storages, and can be stored in compact forms as

and

...
...

...
...

The normal equations associated with (4) are given by

(5)

Let with is and is
Then (5) becomes

(6)

Solving the top equations of (6) for in terms of yields

(7)

Since is a diagonal matrix, can be easily obtained. We
need, however, to find a solution for first. Substituting (7)
into the bottom equations of (6) gives

(8)

Since

is an idempotent matrix, that is, (8) is the normal
equations associated with the following LS problem

(9)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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The solution of then involves a QR decomposition of
This is an acceptable solution since it requires only
operations.

The iterative procedure above may converge very slowly or
may oscillate widely. The following algorithm is used to speed
up the convergence. At theth iteration, let interval be

if
if

then a combination of the golden-section search and successive
parabolic interpolation [14] is used to find such that

is minimum. Set and the iterative
cycle begins again.

Weights can be used in this procedure. Let be an
diagonal matrix with diagonal elements as the

weights for To incorporate the weights, simply premultiply
and by and use them in (7) and (9) to

obtain for each iteration.
The most commonly used weight for is var

Since, in practice, the variance of is unknown, it must
be estimated. We can obtain the estimate of var either
from independent, repeated experiments or (if we have prior
information on the additive and jitter noises) from the model

var

APPENDIX B
METHODS FOROBTAINING OFFSET ADJUSTMENTS

Two possible metrics are considered here. The first is
absolute deviation from the mean. Let

and define the distance metric as the sum of the distance
between and that is

The expression we need to minimize is

Given the value of that minimizes

is median Thus the solution for is

median (10)

The second metric is the sum of the squared distance between
and The expression needs to be minimized is then

Given the value of that minimizes

is Thus the solution of is

Here we define with a subscript replaced by a dot to be the
mean when averaged over the subscript that has been replaced
by that dot. Since the overall mean, is a fixed constant
(independent of subscript , is simply

(11)

The offset adjustment in (10) is more robust against the
presence of outliers in If there is no outlier, both offset
adjustments produce almost identical results. In this paper, we
use the of (11) because the ease of computing. Furthermore,
if then

That is, no shift for individual is needed.

APPENDIX C
NOMINAL TIME-BASE DISTORTION

TBD shown in Fig. 1 is given by

where and

if
otherwise
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