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Least-Squares Estimation of Time-Base
Distortion of Sampling Oscilloscopes

C. M. Wang, Paul D. Hale, and Kevin J. Coakley

Abstract—We present an efficient least-squares algorithm for two components: a deterministic past, called TBD and a
estimating the time-base distortion of sampling oscilloscopes. The random component;, called jitter.
method requires measurements of signals anultiple phases and A number of methods have been developed to estimate

frequencies. The method can accurately estimate the order of . - e . S
the harmonic model that is used to account for the amplitude Earlier methods, such as the “sinefit” [7], [8] and “analytic sig-

nonlinearity of the sampling channel. We study several practical nal” [9], use sine-wave data of a known frequency with single
problems related to the time-base distortion estimation, such or multiple starting phases to estimate the TBD. Stenbakken

as the effect of averaging and sample size requirements. We and Deyst [10] compare the performance of these two methods
also compare the relative performance of various methods for . gimylations. Their results show that the sinefit method
estimating time-base distortion using simulated and measured S

data. performs better than the analytic-signal method when the
- S TBD has discontinuities, whereas the analytic-signal method
me'?ﬁgé‘sT‘?:]g’;:g;J‘é?ef'g:?gF rmagtﬁgg'sc glritiﬂglﬁ?télreast-squares performs better when the TBD is slowly changing. In addition,
' ' ' the analytic-signal method performs better when the TBD is

large. For implementation, the sinefit method requires multiple

|. INTRODUCTION waveforms of different starting phases to carry out the analysis,

IGH-SPEED sampling oscilloscopes have been used Ayhile the apalytic—signal method requires only one waveform.
many years as qualitative tools for measuring temp he analytic-signal method, however, needs to drop data near

ral waveforms. For these oscilloscopes to serve as accurdfe €nds of the record, so the TBD at those samples can not

metrological instruments over their entire bandwidth, sever3 oPtained. o
effects must be compensated for [1], [2]. These effects includeRecent work [11], [12] on TBD estimation has been concen-
time-base distortion (TBD), timing jitter, timing drift [3], [4], trated on least-squares methods that use waveformsitiple

additive noise, and impedance mismatch [5]. Our work focusB8@ses and frequencies. The advantage of such an approach is
on characterizing TBD in high speed digital sampling oscilldhat there are enough data to accurately estimate the TBD (in-

scopes. If left uncorrected, TBD can cause significant errorsGiding discontinuities). It also allows the harmonic distortions

pulse width, step transition, and time interval measurement@,P€ estimated and separated from the TBD. In this paper,

Discontinuities in the TBD can severely distort a short puldi€ Present an efficient least-squares algorithm for estimating
waveform. Such discontinuities must be detected and avoidd§ ime-base and other distortiossnultaneouslyWe study
in even the crudest measurements. After estimation of tRgveral practical problems related to TBD estimation, such

TBD, the measured waveform must be adjusted accordin@? the effect of averaging and sample size requirements. We
[6] to insure high accuracy results. also compare the relative performance of various methods for

The model of a discrete time signal is given by estimating TBD using simulated and measured data.

= f(¢: >
vi = f(t:) + e, Il. LEAST-SQUARES METHOD

where theith sampley; is a function of actual time of sampling  The model of the waveforms of multiple phases and fre-
t; plus the additive noise;. The actual time; can be written quencies is given by

as
h

ti=(— 17T +gi+ 7, Yij = + Z [[%k COS(Zkajtij)
k=1

where(i—1)7; is the ideal sample time arifl is the sampling s sin(@akfit)] + ¢
jk itig ij

interval. Deviations between the ideal and actual times have
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allows different additive noise standard deviations for differemte can average TBD estimates obtained from three sets of

experiments. The model also assumes thats given by four waveforms, or six sets of two waveforms. We denote
L these methods by “1/12,” “2/6,” “3/4,” and “6/2.” The notation
tij = (= DT, +gi + 735 “M/N” means that the TBD estimate is the averagelsf

whereT, andg; are as defined before ang are the random individual TBD estimates, each of which was obtained using
jitters and assumed to be iid (and independent.gf with N waveforms with half from one frequency and another half

zero means and standard deviations(s). There will be from another frequency. To get a unique solution to (2), we

m experiments with, samples for each experiment; that isMUSt impose a constraint on the parameters. For example,

i=1,2---nandj =12, m. we might require thaty; = 0, or X7, g, = 0. That is,
Let ) the LS TBD estimates are unique only up to an arbitrary
translation. This condition also exists for other methods. For
0 =91, 92, gns 01, Py -+ example, the TBD estimates obtained using the analytic—signal
Bir, Yihs s Qs Bty 5 Yk ) method would differ by an arbitrary translation due to different

seﬁarting phases. Thus, TBD estimates must be shifted to a
common level before averaging. A commonly used criterion is
to minimize the “distance” among the shifted TBD estimates.

be the column vector of the unknown parameters of the mod
The number of unknowns is + m(2h + 1). Define

h Let g;j,¢ = 1,2,---,n, be the TBD estimate obtained from
7zi;(0) =c; + > [Bir cos(rkfi((i — )T, + g;)) the jth set of N waveforms,j = 1,2, ---, M. We want to find
k=1 constants; that minimize
+ ik sin(2ak f;((¢ — 1)Ts 4 gi))] 1) n
and z; D(@ﬂ - 1’1,5}7‘,2 — V2, ,5}7‘,/\4 - l’M),
2
SS@) =Y (vij — 2;(6)). where D(.,---,-) is an appropriate distance metric. Two
#J possible distance metrics are considered in Appendix B to

obtainz;. Once these “offset adjustments” are found, eggh

Then the LS esti 0, is the solution of
en the LS estimate . denoted by, is the solution o is then shifted accordingly, and the final TBD estimatean

~

min S5(6). (2) be obtained as the mean of the shifigg, that is,
4
M
A Gauss-Newton type of iterative procedure can be used G = 1 Z (i — vj).
to solve (2). If the procedure is implemented directly, it M =1

would requireO(n?®) operations at each iterative step. This
is not acceptable for a large (in our problemsy = 4096).

The model in (1) has a special structure, however, that c . .
be exploited to obtain an algorithm which requires onl ]. The simulation parameters used here are closely related

. : o those we observe in our laboratory. We used an 8 ns time
O(n) operations at each step. The detailed derivation of t _ :
algé)rithpr)n islgiven in Appendri)x A I et v(vélndow with 4096 sample$n = 4096). The nominal TBD

In the subsequent discussion, all the TBD estimation S is .shown in Fig. 1. It has_discontinuitieg at4ns intgrvals
performed using the LS method. and |nclude§ some quadratlc gnd sinusoidal modulation. Its
exact form is given in Appendix C. We assumed that there
was no harmonic distortiofh = 1). The two frequencies
lll. EFFECTS OFAVERAGING used were 9.75 GHz and 10.25 GHz. At each frequency, 12
The choice of input frequencies is important in TBD estiphases(: — 1)2x /12,7 = 1,2,---,12, were used to generate
mation. Guidelines are given in [12] for selecting good setstotal of 24 waveforms. The additive and jitter error standard
of frequencies. In practice, a pair of appropriate frequencidsviations used were 1% of the amplitude and 80% of the
is used. At each of the two frequencies, signals are sampkaimple period, respectively. Based on these 24 waveforms, six
at different starting phases. In general, the phases measwreeraging methods, 12/2, 6/4, 4/6, 3/8, 2/12, and 1/24, were
and the number of phases used need not be the samemployed to estimatg;. The root—-mean—square (RMS) error
each frequency. Since the estimation is usually carried aftthe estimatej; for each method is calculated as (adjusted
offline, a large number of waveforms may be available. Dder the arbitrary translation)
to computational and other constraints, we may not be able to
use all the data at once to estimate the TBD; we need to do B L R )
“averaging.” To illustrate, suppose two frequencies are chosen. Sg = 4 | 0% Z (9 —9i)*- (3)
For each frequency, six waveforms using different starting =t
phases are sampled. These 12 waveforms are labeled 1 toTte process was repeated 100 times. Fig. 2 plots the 100 RMS
Four possible ways can then be used to estimate the TBD. Wfeors of TBD estimates for each method.
could use all the data at once, or use waveforms, say, 1, 2, 3, 7ig. 2 indicates that the largest gain in performance im-
8, and 9 to estimate the TBD and average it with another TBovement was obtained when we increased the number of
estimate obtained from the remaining waveforms. Similarlyyaveforms in each frequency from 1 to 2 signals nearly in

In simulation experiments, we study the effects of averaging.
D can take on different forms for different oscilloscopes

4096
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Fig. 1. The time-base distortion used in the simulation. Fig. 3. RMS errors of the TBD estimate fad/4 method. The horizontal
axis is the value of\f.
o
S M to use in order to obtain an adequate TBD estimate. Both
. simulated and real data were used to answer this question. We
10 1 first generated 500 sets of four waveforms using the same
@ © ; simulation parameters stated above. Fig. 3 plots the RMS
g . error of the TBD estimate as a function éf on the log
£ § . scale. That is, Fig. 3 plots the value 8j against the value
3 : of M used in theA//4 method to calculateS,. It shows
o) i . .
@ : that the RMS error drops precipitously ¢ increases from
55 i one to ten and levels off whef/ is greater than 200. We
% also measured 500 sets of four waveforms. Each data set of
2 9 four waveform measurements contained a 9.75 GHz signal
T o ! and nearly quadrature signal, and a 10.25 GHz signal and
! nearly quadrature signal. The signals were generated using an
A3 inexpensive 100 kHz—3.2 GHz synthesized signal generator
O

]

"10/2" /4" "4/6" 3/g8" D2 /24"

Averaging Method

multiplied by a5x multiplier. The resulting signal was filtered
and amplified to give spurious harmonics of the input signal
less than—60 dB (re: carrier) and spurious harmonics of the
output signal< —50 dB (re: carrier). The oscilloscope was
triggered using the fundamental signal generated by the signal

I_:ig. 2. RMS errors of the TBD estimate for the six averaging methods. T@bnerator and the relative phase of the measured waveform
line connects the means of the 100 RMS errors. was set by changing the trigger level of the oscilloscope. The
additive noise standard deviation was estimated to be about

guadrature. Moreover, increasing the number of waveforri% of the amplitude, and jitter noise standard deviation was

further in averaging does not significantly improve the perfobetween 740 and 900 fs depending on the trigger level (phase)

mance. For the computational speed, the “1/24” method wa#id frequency. For the measured data, since the TBD is not

on average, 4.8 times slower than the “6/4” method. Simil§pown and hencé, cannot be computed, a different criterion

results were obtained when the actual and assumed harmdhitSt be used. The criterion is the standard deviation of the

order was 3(h = 3). Based on these results, we conclugdBP estimate, which is defined as

that when multiple sets of waveforms are used to estimate the 1 M

TBD by averaging, it is sufficient to have only 4 waveforms. M1 Z (Gi; — Gi)2.

Each set contains two signals in quadrature from each of the j=1

two frequencies. Fig. 4 plots the standard deviation of the TBD estimate for
Having decided to use the methdd/4, the next question the measured data. The number on the top of each subplot is

that comes immediately to mind is what is the proper value tife value of M used in TBD estimation. Fig. 4 shows that
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Fig. 4. Standard deviations of TBD estimates fdi/4 method. The number of the top of each subplot is the valug/of

the range of standard deviations decreases drasticallyf as /4 method with a moderate value 81 enables us to obtain
increases from 2 to 10 but the standard deviation remains fixé¢ uncertainty of the TBD estimate.

at about 0.7 ps up td/ = 500. Both studies suggest that a

reasonable starting value @ to use in TBD estimation is IV. SELECTION OF HARMONIC ORDER

about 20. Incremental and sequential improvement on TBDA measured signal is usually contaminated with harmonics
estimation can be made as more data become available. Tioen the signal generator and distortion in the oscilloscope.
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Consequently, knowledge of the correct harmonic order is g e v c e o s o o o
important for accurate TBD estimation. The proper harmonic o.s0 -
order can be easily determined by examining the residualso7s - e -

from the LS fit. To illustrate, we first use simulated data. 1 2 3456 7 8 9
Twenty sets of four waveforms (20/4) with= 4 were gener-
ated. The amplitudes corresponding to the second, third, and
fourth harmonics were approximately 14, 7, and 3.5% of thgy. 6. Residual error in amplitude versus the harmonic order used in LS
fundamental amplitude. The rest of the simulation parametdits for ten data sets.

were the same as those used before. Different harmonic orders,

from one to nine, were used in TBD estimation. Two re&dugbction Fig. 6 plots the value & (S, is not available for

errors from the LS fit corresponding to different harmonipea| data) as a function df* for the first 10 (out of 500) data
orders were calculated. The first is the residual error in TBRgts 1t suggests that the proper order to use is 3.

S, of (3). The second is the residual error in amplitude.
The residual error in amplitude from the LS fit based on 4
waveforms and a harmonic model of order is given by

Harmonic order used

V. COMPARISON OF METHODS
In this section, we compare the performance of the LS

0% 2 . method with other known methods. We first compare the LS
Z Z (vij — Gij) method with another least-squares based method proposed

Sy = =1 =1 recently by Stenbakken and Deyst [12]. Their method, also
4 % 4096 — 4096 — 4(2h + 1) requiring waveforms of multiple phases and frequencies, uses

wherey;; is the measured signal arig; is the LS predicted & two-stage approach. Specifically, the method_first estimates
signal. The denominator is the number of degrees of freedofiplitude parameters;, j3;., and~;. of (1) for fixed TBD
which is the difference between the number of measuremefitsUsing the ordinary least squares and then estimgtédsr

(4 x 4096) and the number of parameters fitted in the moddixed amplitude parameters using the weighted nonlinear least
For 20/4 method, we calculated the average residual errorSguares. These two steps are repeated until results converge.

amplitude as An advantage of this approach is that it requires fewer op-
erations at each iterative step than the LS method which
Sa4 =4 /2% Z s% estimates all the parameters simultaneously. The comparison

was done by simulation. We employed the same simulation
where the summation is carried out for the 20 individg3l. parameters used before fgr (Fig. 1), frequencies (9.75 and
Fig. 5 plots values of5, and S4 as functions ofh*, the 10.25 GHz), starting phases (0 and°B0and elapsed time
harmonic order used in LS fits. It shows that the corre¢8 ns withn = 4096). We usedh = 3, three additive error
harmonic order is the value df* where its corresponding standard deviations of the 0.5, 1, and 2% of the amplitude, and
Sy or S 4 starts leveling off; that 1S9 or S 4 does not change three jitter error standard deviations of the 20, 50, and 80% of
significantly. In this caseh* = 4. We applied this simple the sample period. Optimal weighting schemes were used in
technique on the measured data mentioned in the previdugh methods. Fig. 7 plots the ratio of the RMS error in TBD
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Fig. 7. Ratios of residual error in TBD of the LS method to the SterFig. 8. Ratios of residual error in TBD of the LS method to the ana-
bakken—Deyst method. The horizontal axis is the valugfolsed inM /4.  Iytic-signal method. The horizontal axis is the value Xf used in M/4.

The top and bottom numbers in each subplot are the value of additive antge top and bottom numbers in each subplot are the value of additive and
jitter error standard deviations. jitter error standard deviations.

(Sy) of the LS method to the Stenbakken-Deyst method as TBD of the LS method to the analytic-signal method as a
a function of M, the number of data sets averageddify4, function of M for the 9 combinations of additive and jitter
for the 9 combinations of additive and jitter error standarerror standard deviations. It shows that the analytic-signal
deviations. The top and bottom numbers in each subplot anggthod can be competitive when the jitter is large adds
respectively, the value (in percentage) of additive and jittemall (the break-even point fer, = 80% is M = 36; that is,
error standard deviations. the LS method would outperform the analytic-signal method
Fig. 7 indicates that, for simulation parameters consideraghenM > 36). However, when the jitter is small, or the TBD
the LS methoduniformly produces smaller RMS errors tharhas discontinuities, or there is harmonic distortion, or there are
does the Stenbakken-Deyst method. The difference can berasy waveforms available, the LS method is preferable.
much as 14% for some cases. There seems to be no discernible
correlation between relative performance and additiveljitter VI. CONCLUSIONS
error standard deviation. For the execution speed, the Stenwe described an efficient least-squares algorithm for esti-
bakken-Deyst method runs about 45% faster than the hfting the TBD of sampling oscilloscopes based on wave-
method at each iterative step. In our implementation, howevésyms of multiple phases and frequencies. The method can
the Stenbakken-Deyst method generally requires more iteagcurately estimate the TBD even when it has discontinuities.
tions than the LS method to converge with the same stoppiligan also determine the correct order of the harmonic model.
criteria, the total execution time for both methods is very closé/e showed that the TBD estimate can be updated and its
Next, we compare the LS method with the analytic-signalerformance improved sequentially as more measurements
method, a nonleast-squares method. Since the analytic-sigmetome available. The method compares favorably with other
method does not perform well with the presence of discoprocedures. We applied the method to simulated and real data.
tinuities in the TBD or harmonic distortion, we uséd= 1
and a 2 ns windown = 1024 between times 3 ns and 5
ns in Fig. 1) wherey; is smoothly varying. In implementing
the analytic-signal method, 8% of the samples from either The iterative procedure starts with an initial guégsand
end were dropped. Fig. 8 plots the ratio of the RMS err@roduces a sequenég, 8-, - - - which, we hope, converges to

APPENDIX A
DERIVATION OF THE LS ALGORITHM
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0. The (I + 1)th iterate@;, is given by

and (see the second equation shown at the bottom of the page)
01 =6, +b,
8zij

where
<8zij 8zij )t
da; MBin  vn)

To save storageg¢/ andV can be stored in compact forms as

8zij

8zij
i1

whereb; is the so-called Gauss-Newton step and is obtained v;; =
from the solution of the LS problem

min |[Jib— (y — =) 4)
) (w1 ug Uup,)
where|| - || is the 2-norm, "
and
y:(y117y127"'7ylnmy217y227"'7y2nm + : :
. t Vi1 Y12 Uim
yYnl, Yn2, 7ynm) vt21 vt22 vt2
m
2] :(211(01)7"'721771(01)7 : : : :
"'7zn1(01)7"'7zn"l(01))t vt'l vtIQ vt'
n n nm

and J; is themn x (n +m(2h + 1)) Jacobian matrix of the
vector-valued functiorz(#) evaluated a#;. That is shown in
Jidib = Ji(y — =)

(6)

This is due to the fact that

87:“

Idgi

In particular, letl/' be the matrix containing the first
columns ofJ; andV the remaining columns, that is,

=0 b= (U'U) U (y—2) — U'Vby

The normal equations associated with (4) are given by
the first equation at the bottom of the page.
operations [13]. Sincel; is mn x (n + m(2h + 1)) (and Then (5) becomes
_ (U y—=)
; o Vily—z))
however, that can be exploited to solve (4) more efficiently.
if i £ k.
SinceU'U is a diagonal matrixh; can be easily obtained. We

®)
The solution of (4) involves a QR decomposition of matrix e .
J,. For au x v matrix the QR decomposition requir€quv?) L€t = (biby) with b is 1 x n andb; is 1 x m(2h +1).
n > m, n > h) it requiresO(n®) operations to compute Utu U'V\ (b,
its QR decomposition. The matriX; has a special structure, <VtU VtV) <b2>
Solving the top equations of (6) fdx in terms ofb, yields
(7)
need, however, to find a solution fég first. Substituting (7)
into the bottom equations of (6) gives

Ji=U V).
1= V) VI — UUU)" UV,
Then = V(I - UUU) U (y - 2). (8)
U 0 0
0 wu 0 Since
u=| . )
S rP=1-uvUu)y~'vt
0 O Uy, ) . . . .
is an idempotent matrix, that i#?? = P, (8) is the normal
where equations associated with the following LS problem
w — Oz Oz zim \' - PV 9
a agi agi agi Hé;n H 2 (y_ Zl)” ( )
0711 0711 0z11 0z11 Oz11 0z11
a.gl 892 agn o 1 8/31 1 a’}/rn h
0z12 0z12 0z12 Oz12 Z12 212
Jl = agl ag? agn 8061 8/311 a’}/rnh
Oznm  Oznm Onm  OZam  OZam Oznm
agl 892 agn aOél 8/311 a’anh 6=0,
V11 0 0 V21 0 0 Un1t 0 0
Vt _ 0 Vi2 0 0 Va2 0 0 Un2 0
0 0 Vim O 0 Vo 0 0 Vnm
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The solution ofb, then involves a QR decomposition V. Giveny,ys2,- -, yx, the value ofy that minimizes
This is an acceptable solution since it requires odlyrm?)

k
operations. Z (yi —
The iterative procedure above may converge very slowly or ;

=1
may oscillate widely. The following algorithm is used to speed . ) )
up the convergence. At thigh iteration, let intervalZ be is v = X, yi/k. Thus the solution of; is
_[(0,2) if S5(8141) < SS(61) N av—a g
1= {(—0.5,0.5) if 55(01+1) > 55(01) Vi = g ; (gu - gzo) = Gej — Jee

then a combination of the golden-section search and successivea we defin

parabolic interpolation [14] is used to fintl€ Z such that ean when averaged over the subscript that has been replaced
55(0;+6b) is minimum. Se¥;.; = 6;+6b; and the iterative p, yhat dot. Sincey.., the overall mean, is a fixed constant

cycle begins again. o (independent of subscrip), »; is simply
Weights can be used in this procedure. & be an

mn x mn diagonal matrix with diagonal elements as the Vi = Jej (11)
weights fory; ;. To incorporate the weights, simply premultipl . . . .
9 Yis p1/2 ¢ . Py P Py The offset adjustment in (10) is more robust against the
U,V,and(y — z) by W/ and use them in (7) and (9) to o ; .
. . . presence of outliers ig;;. If there is no outlier, both offset
obtain b for each iteration. adjustments produce almost identical results. In this paper, we
The most commonly used weight fay;,; is 1/var(y;;). ) b . Paper,

Since, in practice, the variance gf; is unknown, it must use the; of (11) because the ease of computing. Furthermore,

be estimated. We can obtain the estimate of(yaJ either It ;= goj, then
from independent, repeated experiments or (if we have prior

&.; With a subscript replaced by a dot to be the

information on the additive and jitter noises) from the model i = i Z Gij — Jej) M Z Gij — Jee
20 Ozij 2/ . . .
var(yij) = oc(5) + | 5. ) o7 (9)- That is, no shift for individuaky;; is needed.
ij
APPENDIX B APPENDIX C
METHODS FOROBTAINING OFFSET ADJUSTMENTS NOMINAL TIME-BASE DISTORTION

Two possible metrics are considered here. The first isTBD shown in Fig. 1 is given by
absolute deviation from the mean. Let g = O(1 — H(ar(t + 1) + (0.35¢ + 0.35)2

Gie = % Z b — ape”"FH sin (350 (¢ + 3.5))]
+®(t — D)®(5 — t)[as(t — 3) + (0.35¢ — 1.05)?
and define the distance metric as the sum of the distance — ape™ 037D §in(3.57(t — 0.5))]
betweeng;; — 1; and g,,; that is + &(t — 5)[ay(t — 7) + (0.35t — 2.45)?

— a7 00 Gin(3.57(t — 4.5))]
D(Gin — v1.Gi2 — V2, Gid — Vi) = Gij — V5 — Giel.
( ) Z 1931 = v | wherea; = 0.001, a, = 0.002, and

The expression we need to minimize is B(t) = 0, ift <Q
1, otherwise
; ZZ 19i5 = Gie = 5. ACKNOWLEDGMENT
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