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Abstract— We developed artificial neural network (ANN) models 
to simultaneously identify three separate impairments that can 
degrade optical channels, namely optical signal-to-noise ratio 
(OSNR), chromatic dispersion (CD), and polarization-mode 
dispersion (PMD). The neural networks are trained with 
parameters derived from eye diagrams to create models that can 
predict levels of concurrent impairments. This method provides a 
means of monitoring optical performance with diagnostic 
capabilities. 
 

Index Terms— artificial neural network, chromatic dispersion, 
eye diagram, optical performance monitoring, optical signal-to-
noise ratio, polarization-mode dispersion. 
 

I. INTRODUCTION 
S optical fiber transmission systems become more 
transparent and reconfigurable, optical performance 

monitoring (OPM) is essential for ensuring high quality-of-
service [1]. Crucial impairments in optical networks include 
optical signal-to-noise ratio (OSNR), chromatic dispersion 
(CD), and polarization-mode dispersion (PMD). 

Recently, several techniques have been proposed for 
monitoring optical performance [2-6]. Three of these methods 
[2,3,5] utilize amplitude histograms or power distributions to 
estimate bit error rate (BER); one [4] employs delay-tap plots 
to distinguish among impairments; and one [6] uses pattern 
classification techniques for the same purpose. None of them, 
however, have been shown to concurrently quantify three 
different impairments. Of these five monitoring techniques, 
three [2-4] exploit asynchronous sampling, and two [5-6] 
require synchronous sampling. In asynchronous sampling, the 
signal of interest is sampled without regard to an instant 
relative to a decision time, and thus clock recovery is not 
necessary. Synchronous sampling, however, necessitates a 
standard receiver with clock recovery, but can easily be used 
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to generate eye diagrams from which numerous performance 
parameters may be derived.  

Here, we present a method for simultaneously estimating 
the impairments of OSNR, CD, and PMD using artificial 
neural networks trained with parameters derived from eye 
diagrams. These eye diagrams can be generated either from a 
synchronized sampler, or by a technique that regenerates such 
diagrams from asynchronous samples [7]. In the following 
sections, we present a brief overview of ANNs, and provide 
examples of our proposed method with simulated data by use 
of two different bit-rates and modulation schemes, namely 10-
Gbps non-return-to-zero, on-off keying (NRZ-OOK) and 40-
Gbps return-to-zero, differential phase-shift keying (RZ-
DPSK).  

II. ARTIFICIAL NEURAL NETWORKS  
Artificial neural networks (ANNs) are neuroscience-

inspired computational tools that are trained by use of input-
output data to generate a desired mapping from an input 
stimulus to the targeted output [8-9].  ANNs consist of 
multiple layers of processing elements called neurons. Each 
neuron is linked to other neurons in neighboring layers by 
varying coefficients that represent the strengths of these 
connections. ANNs learn relationships among sets of input-
output data that are characteristic of the device or system 
under consideration. After the input vectors are presented to 
the input neurons and output vectors are computed, the ANN 
outputs are compared to the desired outputs and errors are 
calculated. Error derivatives are then calculated and summed 
for each weight until all of the training sets have been 
presented to the network. The error derivatives are used to 
update the weights for the neurons, and training continues 
until the errors drop below prescribed values.  

The ANN architecture used in this work is a feed-forward, 
three-layer perceptron structure (MLP3) consisting of an input 
layer, a hidden layer, and an output layer, as shown in Figure 
1.  The hidden layer allows complex models of input-output 
relationships. The mapping of these relationships is given by 
Y=g[W2·g(W1·X)], where X is the input vector, Y is the 
output vector, and W1 and W2 are respectively the weight 
matrices between the input and hidden layers and between the 
hidden and output layers. The function g(u) is a nonlinear 
sigmoidal activation function given by g(u)=1/[1+exp(-u)], 
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where u is the input to a hidden neuron. According to [10], an 
MLP3 with one hidden sigmoidal layer is able to model 
almost any physical function accurately, provided that a 
sufficient number of hidden neurons are available. 
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Figure 1. Artificial neural network architecture. 

III. METHODOLOGY 

A. 10-Gbps NRZ-OOK 
Figure 2 shows simulated eye diagrams for a 10-Gbps 

NRZ-OOK signal at a few select combinations of CD and 
PMD for a given value of OSNR. Visually, it is obvious that 
these impairments produce distinct features. To quantify these 
attributes, we can calculate various eye-diagram parameters. 
For this first example, we chose four such parameters, 
including Q-factor, closure, root-mean-square (RMS) jitter, 
and crossing amplitude. Q-factor is defined as the difference 
of the mean upper and lower levels divided by the sum of the 
upper and lower level standard deviations; closure is the ratio 
of the outer eye height to the inner eye height; crossing 
amplitude is the point on the vertical scale where the rising 
and falling edges intersect; and RMS jitter is usually defined 
as the standard deviation of the time data calculated in a 
narrow window surrounding the crossing amplitude. These 
four inputs were chosen since they change significantly with 
varying impairment combinations.  

To illustrate our method, we performed 125 simulations 
using the following impairment combinations: OSNR – 16, 
20, 24, 28, and 32 dB; CD – 0, 200, 400, 600, and 800 ps/nm; 
and PMD with values of differential group delay (DGD) equal 
to 0, 10, 20, 30, and 40 ps. The simulated fiber channel 
included a laser with a center wavelength of 1550 nm and a 
FWHM line-width of 10 MHz; a 10 Gbit/s logic source; a 
single-arm, Mach-Zehnder, optical modulator biased at the 
quadrature point with a Vπ drive voltage; and a fourth-order 
Bessel-Thomson filter. 

The ANN consisted of four inputs (Q-factor, closure, jitter, 
and crossing-amplitude), three outputs (OSNR, CD, and 
DGD), and twelve hidden neurons. The ANN was trained by 
use of a software package developed by Zhang et al. [11]. 
Although alternatives were explored, a conjugate-gradient 
technique was chosen since it offers a nice compromise in 
terms of memory requirements and implementation effort.  

Once the model was trained, we validated its accuracy with 
a different set of testing data. We used 64 simulations with the 
following impairment combinations: OSNR – 18, 22, 26, and 
30 dB; CD – 100, 300, 500, and 700 ps/nm; and DGD – 5, 15, 
25, and 35 ps. The software reported a correlation coefficient 
of 0.91 for the testing data. Figure 3 compares the testing and 
ANN-modeled data for OSNR, CD, and DGD. 

(a) None. (b) DGD only.

(c) CD only. (c) DGD and CD.
 

Figure 2. Eye diagrams of the 10-Gbps NRZ-OOK channel with various 
impairments (OSNR = 32 dB). (a) None. (b) DGD only   (40 ps). (c) CD only 
(800 ps/nm). (d) DGD (40 ps) and CD (800 ps/nm). 
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Figure 3. Comparison of testing and ANN-modeled data for the 10-Gbps 
NRZ-OOK channel. 
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B. 40-Gbps RZ-DPSK 
Figure 4 shows simulated eye diagrams for a 40-Gbps RZ-

DPSK signal at a few select combinations of CD and DGD for 
a given value of OSNR. Once again, it is obvious that these 
impairments produce distinct features. In this case, we also 
chose four parameters to train our ANN, namely Q-factor, 
closure, RMS jitter, and the level of transition between 
adjacent zeroes (as opposed to crossing amplitude). 

In this example, we performed 125 simulations with the 
following impairment combinations: OSNR – 16, 20, 24, 28, 
and 32 dB; CD – 0, 15, 30, 45, and 60 ps/nm; and DGD – 0, 
2.5, 5, 7.5, and 10 ps. The simulated fiber channel included a 
laser with a center wavelength of 1550 nm and a FWHM line-
width of 10 MHz; a 40 Gbit/s logic source; a single-arm, 
Mach-Zehnder, optical modulator biased at the minimum 
point with a 2Vπ drive voltage; and a fourth-order Bessel-
Thomson filter. Once again, the ANN consisted of four inputs, 
three outputs, and twelve hidden neurons, and was trained 
with a conjugate-gradient technique. 

Once the model was trained, we validated its accuracy 
using a different set of testing data. We used 64 simulations 
with the following impairment combinations: OSNR – 18, 22, 
26, and 30 dB; CD – 7.5, 22.5, 37.5, and 52.5 ps/nm; and 
DGD – 1.25, 3.75, 6.25, and 8.75 ps. The software reported a 
correlation coefficient of 0.96 for the testing data. Figure 5 
compares the testing and ANN-modeled data. 

IV. CONCLUSION 
We have shown how ANN models, trained with parameters 

derived from eye diagrams, can be used to simultaneously 
identify levels of OSNR, CD, and DGD for 10-Gbps NRZ-
OOK and 40-Gbps RZ-DPSK signals. This method provides a 
powerful new technique for monitoring the performance of 
optical channels. In the near future, we plan on performing 
similar experiments with other modulation schemes, and using 
measured data.  
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(a) None. (b) DGD only.

(c) CD only. (c) DGD and CD.
 

Figure 4. Eye diagrams of the 40-Gbps RZ-DPSK channel with various 
impairments (OSNR = 32 dB). (a) None. (b) DGD only   (10 ps). (c) CD only 
(60 ps/nm). (d) DGD (10 ps) and CD (60 ps/nm). 
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Figure 5. Comparison of testing and ANN-modeled data for the 40-Gbps RZ-
DPSK channel. 


