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Adaptive Characterization of Jitter Noise In
Sampled High-Speed Signals

Kevin J. Coakley, C.-M. Wang, Paul D. Halgsenior Member, IEEEand Tracy S. ClemenMember, IEEE

Abstract—\We estimate the root-mean-square (RMS) value of noise. Our work is motivated by efforts to characterize the im-
timing jitter noise in simulated signals similar to measured high- pulse response functions of high-speed sampling oscilloscopes

speed sampled signals. The simulated signals are contaminated[13]_[16] that are contaminated by jitter noise (as well as by
by additive noise, timing jitter noise, and time shift errors. Before . . ", .

estimating the RMS value of the jitter noise, we align the signals TBD errors, time shift errors,. and add'_t've n_0|se).' . .
(unless there are no time shift errors) based on estimates of the FOr the case where the noise-free signal is a sinusoid plus its

relative shifts from cross-correlation analysis. We compute the harmonics, there are methods to estimate the RMS value of the
mean and sample variance of the aligned signals based on repeateditter noise [8], [17]. Here, we consider the more complex case
measurements at each time sample. We estimate the derlva\tlveWh(_:‘re there is no analytical model for the signal. Hence, the

of the noise-free signal based, in part, on a regression spline fit . .
to the average of the aligned signals. Our initial estimate of the methods developed in [8], [17] do not apply to the signals con-

RMS value of the jitter noise depends on estimated derivatives Sidered in this work. In principle, the RMS value of the jitter
and sample variances at time samples where the magnitude noise can be estimated from data collected over a time interval

of the estimated derivative exceeds a selected threshold. Thisywhere the noise-free signal is a linear function of time [10].
initial estimate is generally biased. Using a parametric bootstrap If this linearity assumption is violated, estimates based on the

approach, we adaptively adjust this initial estimate of the RMS . ; . . . . .
value of the jitter noise based on an estimate of this bias. We premise of signal linearity are, in general, biased. Given the

apply our method to real data collected at NIST. We study how Power spectrum of the jittered signal and a parametric model
results depend on the derivative threshold. for the power spectrum of the jitter probability density function
Index Terms—Adaptive, bias-correction, bootstrap, derivative (Pdf), itis possible to estimate the model parameters that char-
estimation, high-speed, jitter, optoelectronics, regression spline.  acterize the power spectrum of the jitter pdf [9]. Since this ap-
proach is a nonlinear parameter estimation scheme, it is likely
to be biased since estimates that are nonlinear functions of ob-
served data are generally biased. For more discussion on the bias
DEALLY, one would like to sample a signal at equallyof nonlinear estimates, see page 40 of [18].
spaced time intervals. However, in high-speed measuremenin this work, we estimate the RMS value of timing jitter noise
systems, the target time and actual sampling time may diffieased on a fully empirical estimate of the time-varying variance
because of both systematic and random errors. The systematithe signal, and an estimate of the time-varying derivative of
component of this difference is time base distortion (TBOthe unknown noise-free signal. We obtain the estimate of the
[1]-[8]. We decompose the random timing error into a slowlgignal derivative using a regression spline model [19] for the
varying component called drift, and a quickly varying compasignal. In a regression spline model, one can model a signal
nent called jitter [9]-[12] (the terms “jitter” and “jitter noise” without having a closed form analytical model for the signal.
are synonymous and should not be confused with determinigBiar work is inspired by an earlier attempt to estimate the RMS
jitter). Within the time window during which a particularvalue of jitter noise in high-speed sampled signals using a re-
realization of the signal is sampled, the drift error manifestgession spline method [20]. For a clear discussion of regres-
itself by shifting the waveform, while jitter manifests itselfsion spline modeling and related techniques, we direct readers to
by perturbing each of the sampling times in the window bj21]. In[20], repeated measurements of jittered signals provided
a random amount. Within the measured time window, eaelstimates of the sample variance of the signal for each time
of the jitter noise realizations is independent of all the otheample. Based on an estimate of the derivative of the noise-free
jitter noise realizations. By definition, the expected value afignal provided by a regression spline model, and the sample
a realization of the jitter noise at any time is 0. Thus, theariance of the signal at each time sample, they estimated the
root-mean-square (RMS) value of the jitter noise, that is thRMS value of the timing jitter noise. In their regression spline
RMS jitter, equals the standard deviation of the jitter noisapproach, the noise-free signal of interest was approximated as
Further, signal measurements are contaminated by additpiecewise cubic polynomials. The regression spline parameters
noise. In this work, we estimate the RMS value of timing jittethat define each cubic polynomial in each subinterval, the RMS
value of the jitter noise, and the RMS value of the additive noise
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jitter from a subset of the full signal, whereas in [20] they estdf each is zero, that is¢;.) = (7;x) = (6;) = 0, and that the
mated RMS jitter from the full signal. To belong to this subsetgalizations of the additive noise and jitter processes have finite
the magnitude of the estimated derivative of the signal averag@iancess? ando?. We estimate the relative time shift errors
must exceed a chosen threshold. We subsample because wéwan all-pairs cross-correlation method ([23] and Appendix).
pect that the least informative part of the signal corresponBssed on the estimated relative time shift errors, we translate
to time samples where the magnitude of the derivative of tleach signal in time using a Fourier method ([23] and Appendix).
noise-free signal is least. Second and most significantly, we esWe denote théth time sample of thgth aligned signal as
timate the bias, that is the systematic error, of our estimate usiffg. Assuming that we have accurately aligned the signals, a
a parametric bootstrap method [22]. Based on this bias estimditest order Taylor series argument yields an approximation for
we adjust our estimate accordingly. Because we correct our e variance of the sampled signal
timate for bias, our procedure is adaptive.

In a Monte Carlo simulation experiment, we consider two o2(k) = VAR (s5;) =~ I (t)|? 02 + o2 ()
cases. In one case, the signals are contaminated by jitter noise _
and additive noise, but not by time shift errors. In the secodfiére; we consider the general case where we do not have an
case the signals are contaminated by jitter noise, additive noidgalytic model for the derivative of the noise-free signal at time
and time shift errors. For the second case, we estimate relafive/’ (tx). Hence, we must estimate this derivative from mea-
time shift errors based on cross-correlation analysis ([23] afrements). Using (2), we approximate the jitter varian¢es

Appendix). Given the relative time shift estimates, we align the o2(k) — 02
signals using a Fourier method ([23] and Appendix). We es- ol ~ % 3
timate the RMS value of jitter noise from the average of the |f'(te)]

aligned signals and the sample variance of the aligned signals.At any time sample of interest, we cannot determine the

For”thﬁ S|mr:JIated ar_1_d real signals .conS|dereﬁ n th'ls W,Or&act value of the variance of the signal from a finite number of
we will show that RMS jitter can be estimated well by selecting | measurements. Following the standard rule of statistical
a threshold value so that the RMS jitter value estimate is CO'ﬁS‘r’actice we estimate the unknown theoretical variance by
puted from the main feature in the signal which is similar to @omputing the empirical sample variance. As a first step in

damped sinusoid. During the time where the main feature rise§.,,|ating the sample variance, we compute the average of the
from a local minimum to a local maximum, the signal is samy; aligned noisy signals as follows:

pled approximately seven to eight times. For the cases studied,

the RMS timing jitter value is no greater than/2wheredt is 1 X
the interval between samples. In general, the accuracy of our 3, = N Zs;k (4)
RMS jitter estimation method degrades as the true RMS jitter j=1

value increases. -The sample variance of an aligned signal atitretime sample
In Section Il, we present details for calculating our jitter esti- P 9 9 P

mate. In Section lll, for simulated data, we study the perfor- . ;XD
mance of our bias-corrected (and uncorrected) jitter estimate 02(k) = —— Z
based on the regression spline approach. We compare the per-
formance of our bias-corrected estimate to the performance of
two other estimates. One of the alternative estimates is basedSfn estimate of the theoretical variancg k) of the signal at

the assumption that the noise-free signal is a linear functiont9e kth time sample. As the number of sampl¥sapproaches
time in the three-point time neighborhood about the time sampdinity, the sample variance converges to the theoretical vari-
where the sample variance of the signal is largest. The other @8ce. The square root of the sample varianggk) is the
timate is the regression spline approach presented in [20].68timated standard deviation of the signal at thk time
Section IV, we estimate the RMS value of jitter noise in experpample. Throughout this paper, we refer to the estimated stan-
mental signals measured at NIST. dard deviation as the standard error.

2

()

(55 — 3x)

.
Il
=

Il. ESTIMATION PROCEDURE B. Naive Estimate

In order to exploit (3) to estimate the RMS value of the jitter
_ N noise, we need an estimate of the derivative of the noise-free
Assuming that TBD errors are negligible, we can model thégnal and an estimate of the additive noise variance. In this

A. Preliminaries

Jjth observed signal at theh time sample as;; where work, we estimate the additive noise variance from sample vari-
ances computed near the time boundaries where the signal is
sjk = f(te + 65 + Tjr) + €k (1) flat. We define the time sample where the sample variance of the

signal is largest to be tHeth time sample. If we assume that the
;% iS @ realization of the jitter noisé; is a random time shift noise-free function is a linear function of time in the neighbor-
(drift) error, ¢ is a realization of additive noise, arfd-) is an hood of this time sample, the derivative of the noise-free signal
unknown function of time. For each signal, the realizations @ approximately equal t(s- 1 — 5x+-_1)/(2 dt). This deriva-
the additive noise, jitter noise, and time shift noise processes tive estimate is equal to the estimated slope determined by linear
assumed to be independent. We assume that the expected vageession analysis. Based on this estimate of the derivative and
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(3), a naive estimate of the standard deviation of the jitter noiaed

is )
be = |s's(te)]" - €)
N o2(k*) — o2 : . :
Grn = 2dt\| — - 5 (6) Given (3), we expect the ratio af, andb;. to be a rough esti-
(81 = Sk 1) mate of the jitter variance at all. Intuitively, we expect more

) ) ) — information in @, by) data at time samples where the magni-
wheredt is the interval between time samples, afitlis our  yde of the derivative is relatively large. In our studies, the ratio
estimate of the additive noise variance. 7 = ax/by, had a very large variance at time samples where

Since the above naive estimate depends on data from jygd magnitude of the signal derivative was very small. Thus, the
three time samples, we expect it to have a large variance cofjerage of all the;, values would be a poor estimate of the jitter
pared to a judiciously cqnstructed estimate that depends on d@{@ance. To reduce the influence of noisy, (by,) pairs on our
from more than three time samples. Moreover, we expect tBgtimate, we take two actions. First, we design our estimate so
naive estimate to be biased because 1) the estimated derivajivg it depends onag, by,) values at time samples where the
may differ from the true derivative; 2) higher order terms in thg,agnitude of the estimated derivative is greater than a selected
Taylor series are neglected in (3); and 3) the (6) estimate irfeshold. Second, we estimate the jitter noise variance as the
nonlinear function of the observed data and nonlinear estimajggg of the pooleds;, data and the pooleld, data. Pooling is a
are generally biased. For more discussion about the bias of naRwral way to reduce the influence of highly variable, i.e. non-
trivial nonlinear estimates, see page 40 of [18]. The regressigifiormative, (., b;,) values on the estimate. For a discussion of
spline method estimate developed in this work is superior {0 thgta pooling in other statistical estimation problems, see [24],
(6) estimate for two main reasons. First, we incorporate infof5) Finally, we require that our variance estimate be nonneg-

mation from more than just three time samples. Second, we cgfive. Thus, our (nonnegative) estimate of the variance of the
rect our estimate for bias, that is, systematic error. In the N&Xfer noise is

section, we derive our first-pass (uncorrected) regression spline

method estimate of RMS jitter. Afterward, we estimate the bias S, anH (s(th), @)
of this first pass estimate and then adjust the first pass estimate 07 = (/max <07 £ L — ) 9)
. 2o b H (sy(tr), @)
accordingly.
where

C. Regression Spline Estimate: Uncorrected . ,
' ' H (sp(t),a) = {1 if [s3,(2)[ > o max (|s;]) (10)
In a regression spline approach, one selects a sequence of B\ =10 otherwise

interior knots that partition the time interval during which the ) ) )
signal is measured into contiguous subintervals. Within any 8fdc is an adjustable threshold. Our estimate of the RMS value

these subintervals, the regression spline prediction of the sigREihe jitter noise i~ (above, we denote the maximum of 0 and
of interest is a polynomial function of time. The coefficients of aSmax(0,z)). _

the polynomial vary from subinterval to subinterval. In [20], and BY lowering the threshold, we incorporate more of the mea-
in our work, we choose a cubic polynomial within each intervapured datainto our estimate. However, if the threshold is too low,
For the cubic case, there are K interior knots and four exterigfediction error may increase if we incorporate too much noisy
knots (two at each time boundary). Overall, the cubic regre@ata with little or no additional information content. Since the
sion spline model hak + 4 independent basis functions. The?Ptimal choice of the threshold is not obvious, we study how
K -+ 4 regression spline model parameters are determined by {fig choice of threshold affects results in a Monte Carlo simu-
standard method of weighted least-squares where the weigHfiPn experiment. In general, for any choice of threshold, we
a particular time sample is inversely proportional to the sampf&Pect that the above estimate is biased since it is a nonlinear
variance at that time sample. In [20] as well as in our work, V\jgnctlon of the observed datg (nonlinear estimates are_generally
use B-spline basis functions to represent the polynomials in egtfsed [18]). Next, we describe how to correct our estimate for

subinterval. For the cubic case, the first and second derivatiVBi$ Pias.
of the regression spline are continuous at the knots. Based on the ) ) )
regression spline model parameters, one can estimate the defizaRegression Spline Estimate: Corrected

tive of the noise-free signal as a function of time. This derivative We estimate the bias of our estimate using a parametric boot-
information along with empirical estimates of the standard de\strap procedure [22]. The parametric bootstrap procedure is a
ation of the jittered signal at each time sample, allow one to edonte Carlo resampling scheme for simulating synthetic data

timate the RMS timing jitter noise. The B-spline representatidrased on the observed data. Based on the distribution of the (9)

at timet, is denoted as,(¢), and the derivative of the B-splinejitter estimates computed from the synthetic data, one can esti-

representation at timeis denoted as’;(t). mate the standard deviation of the (9) jitter estimate computed
To compute our jitter estimate, it is convenient to define thigom the observed data. Further, one can estimate the bias of the
following quantities at théth time sample estimate and correct it accordingly. In the bootstrap simulation

model, the noise-free signal is equated to the regression spline
. . model estimate of the average of the aligned observed signals
ap, = o2(ty) — o2 (7) sp(t). Like the observed data, the synthetic signals are corrupted
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TABLE |

STATISTICAL PROPERTIES OFESTIMATES OF THERMS VALUE OF THE JTTER NOISE FOR EACH DERIVATIVE THRESHOLDVALUE () AND TRUE RMS JTTER

NOISEVALUE (o, ), WE DISPLAY THE ESTIMATED BIAS (BIAS), STANDARD ERROR (S€),AND RMS FREDICTION ERROR (rms) OF THE UNCORRECTED(9) AND

BiAS-CORRECTED(14) ESTIMATE COMPUTED FROM 100 RUNS OF A SIMULATION EXPERIMENT. IN EACH RUN, RMS JTTER IS ESTIMATED FROM 100 Noisy
SIGNALS. FOR EACH RUN, WE ESTIMATE THE STANDARD DEVIATION OF THE ESTIMATE BY A BOOTSTRAPRESAMPLING SCHEME. WE LIST THE MEAN (COMPUTED
FROM ALL 100 RUNS) VALUE OF THE BOOTSTRAPESTIMATE (15) OF THE STANDARD DEVIATION OF THE ESTIMATE AS sy, . WE NORMALIZE ALL STATISTICAL

QUANTITIES BY THE INTERVAL BETWEEN TIME SAMPLES dt. IN THIS STUDY, THERE ARENO TIME SHIFT ERRORS FOR EACH SIMULATION RUN, THERE
ARE 100 SGNALS. WE LIST THE NAIVE ESTIMATE (6) FOR COMPARISON

uncorrected corrected
o, /dt a | BIAS/dt se/dt rms/dt | BIAS/dt  se/dt rms/dt Sepoe/dt

0.10  0.00 | -0.0090( 45) 0.0449 0.0456 | -0.0084( 56) 0.0559 0.0562  0.0400
0.10  0.01 | 0.0003(10) 0.0099 0.0099 | 0.0010( 10) 0.0097 0.0097  0.0095
0.10 0.10 | 0.0001(3) 0.0034 0.0034 | 0.0001( 3) 0.0034 0.0034 0.0031
0.10 0.50 | 0.0000(4) 0.0036 0.0036 | -0.0001( 4) 0.0036 0.0036 0.0034
0.10 0.99 | -0.0026( 9) 0.0085 0.0089 | -0.0016(9) 0.0088 0.0089  0.0080

0.10 naive | 0.0104(8) 0.0084 0.0134

0.50  0.00 | 0.0090( 14) 0.0135 0.0162 | 0.0025( 14) 0.0137 0.0138  0.0140
0.50 0.01 | 0.0087( 11) 0.0112 0.0141 | 0.0020( 11) 0.0112 0.0114 0.0114
0.50 0.10 | 0.0062( 12) 0.0125 0.0139 | -0.0004( 12) 0.0121 0.0120 0.0117
0.50 0.50 | 0.0036( 16) 0.0155 0.0159 | 0.0002( 15) 0.0152 0.0151  0.0142
0.50 0.99 | -0.0132( 37) 0.0374 0.0395 | -0.0087( 40) 0.0396 0.0403  0.0339

0.50 naive| 0.0472(37)  0.0370 0.0598

1.00 0.00 | 0.0583(29) 0.0285 0.0649 | -0.0008( 26) 0.0256 0.0254  0.0277
1.00 0.01 | 0.0565(26) 0.0256 0.0619 | -0.0013( 23) 0.0229 0.0229  0.0273
1.00 0.10 | 0.0498( 28) 0.0275 0.0568 | -0.0027( 24) 0.0243 0.0243  0.0283
1.00 0.50 | 0.0237(37) 0.0374 0.0441 | 0.0011( 35) 0.0353 0.0352  0.0347
1.00 0.99 | -0.0227( 77) 0.0769 0.0798 | -0.0151( 79) 0.0789 0.0800 0.0714

1.00 naivel 0.08760(98) 0.0984 0.1314

2.00 0.00 | 0.4381( 87) 0.0867 0.4465 | -0.0953( 51) 0.0509 0.1079  0.0978
2.00 0.01 | 0.4293(79) 0.0794 0.4365 | -0.0903( 51) 0.0513 0.1038  0.0992
2.00 0.10 | 0.3763(92) 0.0924 0.3874 | -0.0712( 54) 0.0536 0.0890  0.1056
2.00 0.50 | 0.1840(146) 0.1459 0.2344 | 0.0344( 128) 0.1281 0.1320 0.1517
2.00 0.99 | -0.0350(223) 0.2226 0.2243 | 0.0002( 245) 0.2454 0.2442  0.1849

2.00 naive | 0.3233(366) 0.3661 0.4870 |

by time shift errors, additive noise and jitter noise. In the simande}, is a simulated additive noise realization. In the (12) sim-
lation, the time shift parameters are equated to the estimated td&tion model, we assume that time base distortion is 0 at all
ative time shift parameters computed from the observed datatimes [If time base distortion is not 0, we would add a term
the bootstrap procedure, we assume that jitter and additive naésgial to the estimated TBD to the right hand side of (12). Given
are Gaussian random variables with expected values equal th& TBD is nonzero, the regression spline mogét)) would

and variances equal to those estimated from the primary “die fit to the unequally-spaced time serieg, ;) wheret;, =
served” data. The number of signals in each bootstrap set is the+ (k — 1)dt + T?D(k) whereT?D(k) is the estimate of
same as the number of observed signals. Throughout this waHe TBD. For more details on this approach, see [15], [26]].
we simulate/ = 30 bootstrap replications of the observed dat& he realizations of the jitter noise and additive noise are mutu-
Since the observed data consist of 100 repeat measurementslgindependent realizations of Gaussian random variables with
the noisy signal, each bootstrap replication consists of 100 restandard deviations equal to the corresponding values computed

izations of a noisy signal. from the observed signal&{ ands,). The expected values of
More formally, thejth bootstrap replication of the observedhe simulated jitter noise and additive noise realizations are 0.
signal at theith time sample is,; , where For each bootstrap replication of the observed data, we es-
timate relative time shift errors and align the signals using the
Sk = 5b (t;k) + € (11) same algorithms used for the observed data. We estimate a new
iy =to + (k= 1)dt + Jﬂ + 77 (12) set of regression spline model parameters, a new RMS additive

] ] ] ] noise value, and a new RMS jitter noise valtfe The bootstrap
and, is a constant. Above, (1) is the regression spline modelestimate of the bias of our jitter estimate is

estimate of the average of the aligned signéss the nominal

spacing betweens time samplés, is our estimate of the rel-

ative time shift of thejth signal with respect to the first signal BIAS)o0r =
(Appendix and [23])77, is a simulated jitter noise realization,

~f=

J
> =7 (13)
j=1
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TABLE I

STATISTICAL PROPERTIES OFESTIMATES OF THERMS VALUE OF THE JTTER NOISE. FOR EACH VALUE OF THE DERIVATIVE THRESHOLD () AND TRUE RMS
JTTER NOISEVALUE (o), WE DISPLAY THE ESTIMATED BIAS (BIAS), STANDARD ERROR(S€),AND RMS FREDICTION ERROR (rms)OF THE UNCORRECTED(9)
AND BIAS-CORRECTED(14) ESTIMATE COMPUTED FROM 100 RUNS OF A SIMULATION EXPERIMENT. FOR EACH RUN, WE ESTIMATE THE STANDARD DEVIATION

BY A BOOTSTRAPRESAMPLING SCHEME. WE LIST THE MEAN VALUE OF THE BOOTSTRAPESTIMATE (15) OF THE STANDARD DEVIATION OF THE ESTIMATE AS
S€boot . WE NORMALIZE ALL STATISTICAL QUANTITIES BY THE INTERVAL BETWEEN TIME SAMPLES dt. FOR EACH SIMULATION RUN, THERE ARE100 SGNALS.

WE LIST THE NAIVE ESTIMATE (6) FOR COMPARISON UNLIKE FOR THE TABLE | CASE, THE SIGNALS ARE MISALIGNED DUE TO TIME SHIFT ERRORS WE
ESTIMATE RELATIVE TIME SHIFT ERRORS BY ACROSSCORRELATION METHOD, AND ALIGN THE SIGNALS BY A FOURIER METHOD

uncorrected corrected
o, /dt a | BIAS/dt se/dt rms/dt | BIAS/dt se/dt rms/dt Sepoot/dt

0.10 0.0 | -0.0155(47) 0.0470 0.0493 | -0.0112( 62) 0.0620 0.0627  0.0414
0.10  0.01 | -0.0066( 10) 0.0103 0.0122 | 0.0005( 10) 0.0103 0.0102  0.0110
0.10 0.10 | -0.0075(3) 0.0035 0.0082 | -0.0003(4) 0.0035 0.0035 0.0031
0.10 0.50| -0.0121(3) 0.0035 0.0126 | -0.0013(4) 0.0039 0.0041  0.0032
0.10 099 | -0.0200(6) 0.0062 0.0209 | -0.0041(7) 0.0069 0.0080  0.0064

0.10 naive] -0.0019(8)  0.0083 0.0085

0.50  0.00 | -0.0145( 14) 0.0141 0.0202 | 0.0035( 15) 0.0146 0.0149  0.0140
0.50 0.01 | -0.0163( 11) 0.0112 0.0197 | 0.0023(12) 0.0115 0.0117 0.0107
0.50 0.10 | -0.0262( 13) 0.0129 0.0292 | -0.0012( 13) 0.0130 0.0130 0.0110
0.50 0.50 | -0.0527( 15) 0.0154 0.0549 | -0.0061( 16) 0.0165 0.0175  0.0132
0.50 0.99 | -0.1001( 31) 0.0312 0.1048 | -0.0282( 35) 0.0346 0.0445 0.0243

0.50 naive | -0.0300(39) 0.0387 0.0488

1.00 0.00 | 0.0044(29) 0.0290 0.0291 | 0.0113(27) 0.0272 0.0294 0.0276
1.00 0.01 | -0.0005( 27) 0.0271 0.0269 | 0.0091( 25) 0.0253 0.0267  0.0270
1.00 0.10 | -0.0301( 30) 0.0297 0.0422 | 0.0026( 28) 0.0284 0.0284  0.0289
1.00 0.50 | -0.1087( 41) 0.0407 0.1160 | -0.0099( 43) 0.0432 0.0441  0.0347
1.00 0.99 | -0.2259( 76) 0.0758 0.2382 | -0.0696( 85) 0.0854 0.1098  0.0511

1.00 naive|—0.0821(101) 0.1014 0.1301

2.00 0.00| 0.2456( 91) 0.0913 0.2619 | 0.0448( 65) 0.0654 0.0790  0.1099
2.00 0.01 | 0.2165( 90) 0.0902 0.2344 | 0.0376( 69) 0.0691 0.0784 0.1107
2.00 0.10 | 0.0570(129) 0.1291 0.1405 | 0.0368( 109) 0.1085 0.1141  0.1286
2.00 0.50 | -0.2838(169) 0.1687 0.3298 | 0.0048( 200) 0.2001 0.1992  0.1452
2.00 0.99 | -0.5652(183) 0.1830 0.5938 | -0.1960( 227) 0.2269 0.2989  0.1232

2.00 naive|—0.1127(686) 0.6859 0.6917

wherea ;" is the estimate of RMS jitter computed from tjte  model has 1028 knots. Between knots, the interpolating polyno-
bootstrap replication. Our bias-corrected estimate of RMS jitterial is cubic. In each of many runs of the simulation, we gen-

noise is erate 100 synthetic signals that are contaminated by jitter noise,
7 additive noise, and possibly time shift errors. In the first case

35 — 57 — BIASyou = 205 — L 7. (14) (Tablel), there are no time shift errors. For this case, we assume

J = the signals are aligned, that is, we do not estimate relative time

shift errors. In the second case (Table Il), the signals are mis-
gfl'gned due to time shift errors. For this case, we estimate the
relative time shifts and align the signals (Table Il, Appendix).

N In case 2, we model the time shift errors as realizations of a
1 s 1 J e Gaussian AR(1) process [27] where the autocorrelation at lag
Z Iri — 7 Z : (15) 1is 0.5 and the standard deviation is @45 In Figs. 1 and 2,
we display the average of 100 aligned noisy signals, the mag-
nitude of the estimated derivative of the signal average based

. SIMULATION STUDY on the regression spline model, and the standard error of the
aligned signals as a function of time. In Tables | and II, we list
A. Results the standard error of the bias estimate in parentheses. For in-
We quantify the performance of our estimate in a Monte Carktance, 0.0003(10) signifies that the bias estimate and associated
experiment. In the simulation study, we equate the noise-freeandard error are 0.0003 and 0.0010.
signal to the regression spline estimate of the average of alignedh the simulation experiments, the true value of the RMS
experimental signals collected in an experiment at NIST. Eaghlue of the additive noise, = 0.000 603 794. The RMS value
simulated signal is sampled at 2048 times. The regression splai¢he additive noise is estimated from the first 50 samples after

The bootstrap estimate of the standard deviation of the unc
rected jitter estimate is
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the 10th sample and the last 50 time samples before the 2038thrder to suppress possible artifacts arising from boundary ef-
time sample. We neglect the first 10 and last ten time samplests related to the Fourier algorithm.
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Fig. 3. (a) Signal average of 100 aligned observed signals. (b) Magnitude of estimated derivative (scaled so that maximum magnitude is 1)d @y&tafdar
signal. The interval between sampleglis= 1.96 ps. The RMS additive noise estimateas = 0.000268 V.

B. Comments (14) is relatively small (relative to the standard error) and stable
for thresholds equal to 0.01, 0.1, and 0.5. For both cases (drift

For the case of no time shift errors, = 0.5 di and the a4 no drift), the bias of the corrected estimate is much lower
same additive noise as before, we estimate the RMS value[ﬁ)gm the bias of the uncorrected estimated.

the jitter noise by the computationally expensive method pre-The standard deviation of the estimate depends on the

sented in [20]. In a study based on 500 Monte Carlo replicgyeshold (Tables I, Il). Except for the lowest jitter case of
tions, the mean and standard deviation of the 500 est|mate%9f — 0.1 dt, the highest threshold af = 0.99 yields the

the RMS value of the jitter noise are 0.442and 0.012it, re-  ggtimate with the largest RMS prediction error and largest
spectively. Thus, the bias of the method in [20] is larger than tResndard error. Far, = 0.1 dt, a = 0 yields the estimate with

corresponding bias of our estimate for this jitter noise level (Sﬁ%hest RMS prediction error and largest standard error. In
Table I). general, except for the lowest and highest thresholds, the mean
In general, the RMS prediction error of the corrected estimg@otstrap prediction of the standard deviation of the estimate is
(14) is less than the RMS prediction error of the naive estimaiyse to the actual standard error of the estimate. The bootstrap
(6) for all thresholds (Tables |, II). For most cases, the magnitudgtimate of the standard deviation of the estimate is a promising
of the bias of the corrected estimate is closer to 0 than is thRignostic statistic for threshold selection. For instance, for any
magnitude of the bias of the naive estimate. We conclude thajen data, we might select the threshold which minimiges
the bias-corrected estimate (14) is superior to the naive estimaten the parametric bootstrap procedure, we assume that the
(6) of RMS timing jitter noise. jitter pdf is Gaussian. For real applications, the actual jitter pdf
In general, the corrected estimate has lower RMS predictigfay not be Gaussian. As the departure from normality becomes
error for the case where there are no time shift errors (Tablenhbre extreme, the reliability of the bias estimate should dete-
compared to case where there are time shift errors (Table Hprate. To explore this issue, we simulated observed data con-
Since the relative time shift estimates are not perfect, we axminated by Gaussian timing jitter noise as before. However,
pect that jitter estimation is more difficult for the second casghen simulating bootstrap replications of the observed data, we
(Table I1). For the four jitter noise levels considered in Table lkample timing jitter noise from a uniform distribution. The uni-
the RMS prediction errors [23] of the relative shift estimatef®rm distribution is centered on 0 so that the expected value of
are 0.03, 0.16, 0.30, and 0.d8. In general, as additive noisethe jitter noise is 0 as before. Further, the upper and lower end-
or jitter noise increases, the performance of our estimate shoplsints of the uniform distribution are selected so that the vari-
deteriorate. ance of the simulated jitter noise equals the estimated variance
The bias of the uncorrected estimate (9) depends stronglyafithe timing jitter noise. Except for the highest jitter case, the
threshold. However, in general, the bias of the corrected estimatatistical properties of the corrected jitter estimate were almost
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Fig.4. (a)Signal average of 100 aligned observed signals and regression spline estimate. (b) Magnitude of estimated derivative (scaledaomiratigrikide
is 1). (c) Standard error of signal. The nominal interval between sampli¢s$s1.96 ps. The RMS additive noise estimateas = 0.000268 V.

the same as before. For the highest jitter case, this modelthgeshold, is not large compared to the estimated random error
error inflated the RMS prediction error of the estimate by abo(iey,..¢). The stability of the jitter estimate as a function of
50%. threshold and number of knots supports the claim that our
regression spline model is sufficiently complex for our purpose
IV. REAL DATA (of estimating RMS jitter noise).
In the bias-correction step, we assume that the actual jitter
If is Gaussian. When the jitter is assumed to be uniform, the
éas—corrected estimates are lower than the ones computed based
the Gaussian assumption by approximately 1%. In general, if
timing jitter noise pdf is not Gaussian, this sort of robustness
alysis may help quantify systematic error not removed by our
z@ s-correction procedure.
etween 0.42 ns and 0.47 ns, the signal has a quasisinusoidal
m. Over this interval, the signal rises from alocal minimum to
ocal maximum twice. During this rise, the signal is sampled
about seven to eight times. Recall, that the simulated signals
were sampled about the same number of times during their rise

nominal sampling time plus the value of the TBD at théme i This ai fid that th i te is hiah
sample. Given the estimated regression spline parameters, {pe- “his gives us confidence that the sampling rate 1S hig
enough to accurately characterize the jitter noise.

can easily estimate the derivative at alue.) In Figs. 3 ) ) . .
y anyv ) g All thresholds with the exception af = 0.99 yield similar

and 4, we display the signal average of the 100 aligned signals, .
we dispiay 9 verag '9 '9 ults. The largest threshold yields a result that appears to be

an estimate of the derivative of the noise-free signal, and feu's: tent with the | threshold its. Thi Iti
sample variance of the observed signals. Inconsistent wi e lower threshold results. This result is con-

In Table IIl. we list estimates of the RMS value of jittersistent with the simulation results. Based on this observation,

computed from observed data as a function of the derivati%e result for the highest threshold is not as trustworthy as the
thresholda and as a function of the number of knots. Théesults for the lower thresholds.

uncorrected estimate of the RMS jitter noise depends strongly
on threshold. However, the corrected estimate does not depend
strongly on threshold. The highest values of the bootstrapWe estimated the RMS value of timing jitter noise in simu-
estimates of the standard deviation of the corrected estimbgtted signals that were similar in complexity to high-speed sam-
were for the lowest and highest thresholds of 0 and 0.99. Tpked signals collected at NIST. We modeled the noise-free signal
variation of the corrected estimate with knot number, and witks a piece-wise polynomial using a regression spline approach.

We estimate the RMS jitter from 100 misaligned measured
high-speed sampled signals. We estimate RMS jitter as
scribed before. Due to TBD errors, the nominal sampling tim
are not equally spaced. We fit the regression spline mo
to the signal average of the aligned signals. Based on
B-spline model parameters, we estimate the first derivati
of the noise-free signal at each of 2048 unequally spac
time samples. The derivative estimates are computed in a V)ga
which accounts for TBD errors that are estimated in a separ
experiment. (We fit the regression spline model to data of t
form (¢, 5¢), & = 1,2,--- wheret;, is the sum of thekth

V. CONCLUSION
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TABLE Il
WE ESTIMATE THE RMS VALUE OF TIMING JTTER NOISE BASED ON 100 ALIGNED EXPERIMENTAL SIGNALS. THE NOMINAL INTERVAL BETWEEN SAMPLES IS
1.96 ps. HE NUMBER OF SAMPLES PERSIGNAL IS 2048. BEFOREJITTER ESTIMATION, SGNALS ARE ALIGNED. DERIVATIVE ESTIMATES ACCOUNT FORTIME BASE
DISTORTION ERRORSTHAT ARE ESTIMATED IN A SEPARATE CALIBRATION EXPERIMENT. BOTH THE UNCORRECTED(9) AND BIAS-CORRECTED(12) ESTIMATE OF
THE RMS VALUE OF THE TIMING JTTER NOISE ARELISTED. WE ESTIMATE THE STANDARD DEVIATION OF THE ESTIMATE BY A PARAMETRIC BOOTSTRAP
RESAMPLING SCHEME. THE BOOTSTRAPESTIMATE OF THIS STANDARD DEVIATION IS LISTED ASS€pq0t. THE BOOTSTRAPESTIMATE OF THE STANDARD
DEVIATION IS AN APPROXIMATION TO THE STANDARD ERROR THAT WOULD HAVE BEEN COMPUTED FROM MULTIPLE REALIZATIONS OF THE OBSERVED DATA

no. knots a  samples above threshold uncorrected est. (ps) corrected est. (ps) Sepoot (PS)

800 0.00 all 1.405 1.402 0.033
800 0.01 460 1.394 1.394 0.032
800 0.10 36 1.379 1.397 0.034
800 0.50 14 1.333 1.400 0.030
800 0.99 1 1.214 1.362 0.073
1028 0.00 all 1.394 1.393 0.032
1028 0.01 462 1.389 1.390 0.032
1028 0.10 34 1.367 1.386 0.033
1028 0.50 14 1.309 1371 0.030
1028 0.99 1 1.140 1.260 0.073
1600 0.00 all 1.393 1.406 0.035
1600 0.01 574 1.389 1.405 0.035
1600 0.10 33 1.370 1.400 0.037
1600 0.50 14 1314 1.401 0.040
1600 0.99 1 1.132 1.314 0.085

In one case, the signals were contaminated by additive noike RMS jitter estimate stabilizes as the number of knots in the
and timing jitter noise. In the other case, the signals were caegression spline model increases.
taminated by additive noise, jitter noise, and time shift errors.

For the second case, we aligned the signals based on estimated APPENDIX
values of the relative time shifts determined from cross-correla-
tion analysis. ALIGNMENT OF SIGNALS

Based on repeated measurements of the noisy signals, Wer approach for aligning signals generally follows the

gomputgd the sample variance O_f the (a]igned) signals asa fURfsthod presented in [23]. However, we implement a faster ver-
tion of time. Based on a regression spline model, we estimalgdy, of the approach described in [23]. In brief, we estimate the
the derivative of the signal average at each time sample. QU[,tive time shift of each distinct pair of signals by minimizing
RM.S t|_m|ng jitter estimate was computed from the esumatqﬂe mean square difference (MSD) between one signal and the
derivatives and sample variances at samples where the magRjtted version of the other signal. We evaluate MSD at relative
tude of the estimated derivative exceeded a selected threshglgets which are integral multiples of the interval between
Using a parametric bootstrap approach, we adjusted the estimg{g\plesdt. We then interpolate to estimate a relative shift
for bias. In general, the bias of the corrected estimate was myghich is, in general, a nonintegral multiple @f. We combine
lower than the bias of the uncorrected estimate. For intermedigéative shift estimates computed from al(N — 1)/2 pairs
thresholds in range from 0.01 to 0.5, the bias of the correctgflsignals to estimate th& — 1 time shift parameters. We give
estimate was relatively small and stable for the simulated dafige technical details of the approach below.
However, in general, our bias-correction scheme was not as efye assume that each noisy signal is shifted with respect to the
fective when we selected the largest threshold of 0.99. others. That is, we model the expected value ofiihesignal at

For real data, the uncorrected estimate of the RMS jitter noisme ¢ as
depended strongly on threshold. However, the corrected esti- . _
mate did not depend strongly on threshold. The bootstrap es- <5 (t>> = 5(t + 6k) (16)

timate of the standard deviation of the corrected estimate V‘(ﬁﬁereék is an unobserved time shift parameter & is the

lowest for thresholds between 0.01 and 0.5. _ unobserved reference signal. From a se¥afignals, we cannot
Provided that the signal is sampled at a sufficiently high ratggtimate the set of absolute time shiftsss, - - -, 6. Instead,

we expect our method to be valid for cases where the noise-fige estimate relative time shift of thigh and first signall;; =
signal is well approximated as piece-wise cubic polynomiaj;? — 5.

where the first and second derivatives are continuous. We reCgq; the signal pair containing thith signal andth signal, we
ommend that users of our methods perform a stability StUdyéBmpute

verify that the sampling rate is sufficiently high for the purpose ) ) )

of estimating the RMS value of the jitter noise. We also rec- MSD(A) =Y (s'[te — A] — s7[ti]) . (7)
ommend that users demonstrate that the regression spline has k

a sufficient number of knots in order to sufficiently model thas a function ofA. The translationA is an integral multiple
complexity of the signal of interest. The user should verify thatf the interval between sampleg. In the above expression,
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we sum over all time samples except the first and last 20 time
samples. In our approach, we assume that the signal is flat near
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the magnitude of the value @k that minimizesMSD is less
than 20dt.

We compute MSD in an neighborhood of a good initial guess
for the optimal value ofA. Our initial guess is provided by a fast
relative shift estimation method based on time centroids of thel]
magnitude of the signal [23]. Our estimate of the time centroid 3
of a signals(t) is

¢ = Do s(te) | H (e, )ty [l

= 18
> s H(t, ) (18)
[4]
where
1 if |s(t)] > &
_ s o
H{(t,0) = {0 otherwise (19)

[6]
We setr = 0.5 max(|s(t)|) for the signals studied in this work.
For the signals studied here, this choicenois reasonable. In
general, one might select the thresheldusing the adaptive
technique in [23].

If the value of A that minimizedMSD is on a boundary of
the search neighborhood, we repeat (recursively) the search for a
neighborhood with twice as many points. For the simulated datd®
(Section Il1), the initial search neighborhood had 17 points. For
the real data (Section 1V), the initial search neighborhood haét0]
7 points. We define the value df on the lattice that minimizes

(71

(8]

MSD to be A*. We estimate the optimal value &, A, by  [11]
guadratic interpolation as follows:
. [12]
A= A*
3 MSD(A*+dt)—MSD(A* —dt) (20) L
2 (MSD(A* +df) + MSD(A*—dt)—2 MSD(A")) s
We denote the (20) estimate of the relative shift of ttke  [14]

andjth signals asfkij. The complete cross-correlation method

estimate of the relative time shiff,; is [15]
. 1 R R R
din= 5 |28+ Y (Aun = Any) (21)
m#k,j [16]

We align thekth signal with respect to the first signal by
translating it by the amoun:fkl. Since the translation is not [17]
an integral multiple ofit, we align each signal using a Fourier
method. We compute the complex Fourier transform of the signé}g]
to be translated. We choose a frequency representation whi¢te]
ranges from 0 to twice the Nyquist frequency. At frequencies less
than or equal to the Nyquist frequency, we multiply the comple
Fourier transform by,xp(—27rf¢fk1) wheref is frequency. The
Fourier transforms at the other frequencies above the Nyquis#!l
frequency are adjusted so that they satisfy a complex conjugate
symmetry with the (adjusted) Fourier transform values at thgz2]
corresponding frequencies below the Nyquist frequency. The
translated version of thieth signal is equated to the real part of 23]
the inverse Fourier transform of the adjusted Fourier transform.
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