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Abstract - We report computer simulation results 
of polarization mode dispersion (PMD) 
measurements using the fixed analyzer technique.  
We find a new value for the polarization mode 
coupling factor of 0.805 (a 2% difference with the 
old value of 0.824).  Systematic biases due to 
sampling density and extrema thresholding are 
quantified (6-12% for typical measurement 
conditions), and a simple correction algorithm is 
presented which removes the effects of these 
biases within ±1.7%. 

 
Fig. 1  Generic fixed analyzer PMD  measurement apparatus. 

 
 

 

 
Index Terms – Fixed analyzer, k factor, mode 
coupling, peak counting, PMD, polarization mode 
dispersion, sampling density, wavelength 
scanning.  
 
 

I. INTRODUCTION 
 
Among the methods of polarization mode dispersion 
(PMD) measurement, the fixed analyzer technique is 
perhaps the simplest to use.  Over its lifetime, some 
empirical techniques for noise reduction and 
sampling parameters have been generally adopted.  In 
this paper, we examine in detail the characteristics 
and associated uncertainties of extremum 
thresholding and sampling density. Fig. 2  Typical transmission spectrum for fixed analyzer PMD 

measurement.  
In its simplest configuration, a fixed analyzer 
measurement can be made using the set up of Fig. 1: 
a spectrally broad source (or alternatively a tunable 
laser), a pair of polarizers with the specimen in 
between, and an optical spectrum analyzer (or simple 
detector in the case of the tunable laser).  For a 
specimen with a high degree of polarization mode 
coupling, the spectral intensity T(ω) where ω is 
optical frequency, at the detector will have a quasi-
random output resembling Fig. 2.  Poole and Favin 
have shown that the PMD of the specimen is 
proportional to the number of extrema or the number 
of mean-value crossings in T(ω) [1].  In extremum 
counting, the accuracy of the measurement relies on 
correct wavelength measurement and identification of 
extrema.  Extremum identification is altered by 
sampling the curve improperly and by the presence of 
noise in the system. We discuss the effects of these 
two error sources below. 

II. SAMPLING DENSITY 
 
For long fibers, Poole and Favin related the expected 
value of PMD 〈∆τ〉  to the expected value of the 
number of mean-value crossings Nm. 
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where ∆ω is the width of the frequency window over 
which the measurement is taken.  The factor 4 in (1) 



 

 was obtained analytically, while the factor 0.824 in 
(2) was obtained through Monte Carlo simulation [1].   and 

  
In practice, measured values of Nm and Ne are used in 
place of 〈Nm〉  and 〈Ne〉  to estimate the PMD 〈∆τ〉 .  
Values of Nm and Ne in general depend on 〈∆τ〉,  ∆ω, 
and the sampling density η =  nf / 〈∆τ〉∆ω (a unitless 
quantity where nf  is the number of points used to 
sample T(ω)).  Under regular conditions, Nm and Ne 
depend on 〈∆τ〉 and ∆ω only through their product 
〈∆τ〉∆ω.  That is, the smaller the PMD, the larger the 
spectral width required to estimate the PMD with the 
same precision.  Since T(ω) is everywhere 
differentiable and continuous on ω, the number of 
discrete frequency measurements made will affect the 
outcome of Nm and Ne.  In fact, Nm and Ne are 
nondecreasing functions of η.  This means that if η is 
not sufficiently large, (1) and (2) will produce PMD 
estimates which are biased toward smaller values. 
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To study the effects of sampling density, we 
performed extremum counting and mean-value 
crossing measurements on T(ω) data from computer-
simulated fixed analyzer measurements.  Our 
simulation was much like that of Poole and Favin [1].  
We simulated the fiber as a stack of 2700 waveplates 
with their optic axes randomly oriented.  The 
differential group delay (DGD) ∆τi between the fast 
and slow axes of each waveplate was randomly 
selected from a uniform distribution between 0 and 
∆τmax = 0.8556 ps.  This random DGD is different 
from that of Poole and Favin where the waveplates 
all had the same DGD.  We used the Jones calculus 
to calculate the transmission spectrum T(ω) over the 
spectral window ∆ω for propagation of light through 
the waveplate stack situated between a pair of 
polarizers.  A full data set consisted of T(ω) data for 
10 000 simulated fibers.  A more detailed description 
of our simulation is given in Appendix A. 

Fig. 3  Asymptotic behavior of measured number of 
extremum and mean-value crossings as a function of 
sampling density. 
 
 
Table I 
Results of PMD Measurements Made Using k2 = 0.805 and 
0.824 for simulations with various 〈∆τ〉 (True PMD) and 〈∆ω〉 
values (all sampling densities were fixed at η = 7) 
 

〈∆τ〉 (ps) ∆ω(ps-1) nf 
PMD 

Estimate 
k=0.805, (ps) 

PMD 
Estimate 

k=0.805, (ps) 

standard 
error 

10 5π 1100 9.97 10.21 0.029 

40 5π 4400 40.05 41.00 0.058 

23.65 3π 1560 23.62 24.17 0.058 

23.65 7π 3640 23.61 24.17 0.038 

  
 

Let )(~ ηmN  and )(~ ηeN  be the means of Nm and Ne 
of the 10 000 simulated fibers measured with 
sampling density η.  Fig. 3 plots )(~ ηmN

~N

 and 

versus η.  It clearly shows that  and )(η

)(

~
eN )(ηm

~ ηeN approach asymptotic limits as η becomes 

large.  Since )(~ ηmN  and )(~ ηeN are based on 10 000 
fibers, they are very good estimates of 〈Nm〉 and 〈Ne〉 
and we obtain the mode coupling factors used in (1) 
and (2) as a function of η.  That is, we obtain 

A.  Corrected Mode-Coupling Factor 
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Using (A4) to generate 〈∆τ〉, we are able to calculate 
kl and k2.  Fig. 4 plots our calculated values of kl and 
k2 as functions of η and shows that kl converges to 
4.00 ± 0.0037 (the predicted limit) as η becomes 
large.  However, k2 converges to 0.805 ± 0.0005, not 
the predicted factor 0.824.  The agreement of our k1 
with the closed-form prediction of 4 verifies the 
integrity of our simulation and lends support to our k2 
value.  In order to further verify k2, we performed 
several more simulations (of 1000 fibers each) for 
various values of PMD 〈∆τ〉 and frequency window 
∆ω, holding the sampling density η constant at 
approximately seven.  Table I shows the simulation 
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results of PMD measurements using k2 = 0.805 and 
k2= 0.824.  The estimated PMD using 0.805 always 
agrees with the theoretical PMD 〈∆τ〉 within ± 2u (u 
= standard uncertainty [2]), whereas the PMD 
estimates using 0.824 are not even within a ±3u band 
of the true PMD.  We further verified the simulation 
by using a small-value PMD as well.  10 000 fibers 
were simulated with 〈∆τ〉 = 0.5 ps, and η ≈ 11 (nf  = 
400).  Using k2= 0.805, we measured a PMD of 
0.4981 ps; k2= 0.824 gave a PMD of 0.5098 ps and u 
= 0.000952 ps for both measurements. 
 
As for experimental proof that k2 = 0.805, the large 
inherent uncertainties in PMD measurements [(5) and 
(6)] make a 2% discrepancy difficult to verify.  
Though several experimental comparisons have been 
made [3]-[5], none have sufficient numbers of 
statistically independent measurements on highly 
mode-coupled fibers to verify k2 within 2%.  In fact, 
in order to experimentally measure k2 within, say, 
1%, using a 100 nm spectral-width source on fibers 
with a nominal PMD of 1 ps would require at least 
158 statistically independent measurements. 
 

 
Fig. 4  Calculated mode coupling constants versus sampling 
density. 

 
In trying to identify the source of the 2% 
disagreement between our value of k2 and that of 
Poole and Favin, we have three possible culprits. The 
most likely candidate would be if Poole and Favin 
had an insufficient sampling density.  Fig. 4 
demonstrates that using the slightly low value of η = 
1.6 would be sufficient to give the 2% bias to k2.  
However, this hypothesis cannot be verified as the 
Poole and Favin paper contains a typographical error 
in reporting the sampling density.  A part of this 
discrepancy might also be explained as being due to 
the use of waveplates of fixed versus random DGD.  

We demonstrated this by performing a simulation of 
10 000 fibers using fixed DGD waveplates and the 
same parameters as Poole and Favin used.  Plotting 
measured values of k1 and k2 as a function of η, 
similarly to Fig. 4, we found that k1 converged to 
0.404, and k2 to 0.809.  Therefore, their numbers 
might be biased slightly due to the use of the fixed 
DGD plates.  A third source of uncertainty in Poole 
and Favin's value could have come in their estimate 
of the expectation value of T’’(ω), which required the 
extrapolation to ω = 0 of a fourth-order polynomial 
fit to the simulated data.  In light of these possible 
error sources, the 2% discrepancy is explainable as 
simply a slight improvement in the uncertainty of our 
simulation over that of Poole and Favin. 
  
B. Optimum Sampling Density 
 
The fact that k1 and k2 are functions of sampling 
density brings to mind the question of what is the 
optimum sampling density.  Clearly, sampling with 
too few points will yield fewer extrema (or mean 
crossings) underestimating the PMD.  On the other 
hand, sampling too densely is redundant, magnifies 
the effect of noise in the system and extends the 
measurement time.  If the asymptotic values of k1 = 4 
and k2 = 0.805 are used at insufficient sampling 
density, we find an inflated uncertainty associated 
with the PMD estimate.   

Fig. 5 displays the standard uncertainty of the PMD 
estimate as a function of η (based on 10 000 
simulated fibers). For η > 2, the uncertainty is  

  

Fig. 5  Standard error of extremum counting and mean-value 
crossing measurements as a function of sampling density. 

dominated by the inherent random statistical 



 

uncertainty of the measurements [1] 
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If η < 2, these errors will be dominated by a 
systematic bias due to insufficient sampling.  
Therefore, in order to minimize uncertainty, at least 
2〈∆τ〉∆ω frequency points should be sampled.  As an 
example of the requirement this imposes, Table II 
demonstrates the wavelength resolution ∆λmax re-
quired to achieve the η ≥ 2 condition for various 
values of PMD (at a center wavelength of 1550 nm). 
In the next section, we will discuss a normalization 
technique which reduces the errors associated with 
improper sampling densities. 
 
Table II 
Maximum Wavelength Step Allowed by η ≥ 2 requirement for 
various PMD Values 
 
PMD 
(ps) 0.1 0.5 1 2 5 10 

∆λmax 
(nm) 6.4 1.3 0.64 0.32 0.13 0.064 

 
 

III. NOISE EFFECTS 
 

In extremum counting, the PMD estimate is 
proportional to the number of extrema and so is very 
sensitive to the presence of noise in the system.  A 
popular noise reduction method is to count as 
extrema only those maximum and minimum points 
which surpass some threshold height or depth ε.  
However, thresholding has the often overlooked 
problem of also eliminating some "real" peaks from 
consideration.  Here, we quantify the effects of 
thresholding on the measured PMD. 
 
A. Extremum Thresholding 
Before discussing results, it is necessary to define 
what is meant by extremum thresholding. The 
simplest approach to extremum thresholding is to 
determine the height of a peak and the adjacent valley 
as the absolute difference between their T(ω) levels.  
However, this technique does not work well for noisy 
data where the density of noise peaks is comparable 
to, or larger than, the density of real peaks.  Consider 
the example of Fig. 6.  The T(ω) curve shown 
represents wavelength scanning data with about 5% 
intensity noise.  Using this technique with, say, an 

8% threshold would eliminate the broad valley V 
(which is a real feature) from the extremum list.  We 
use here a more robust definition of peak height 
where "extremum pairs" are identified as being the 
closest peak and valley whose extent T(ωpeak) - 
T(ωvalley) is greater than ε.  A detailed description of 
the algorithm is given in Appendix B. 
 

 
Fig. 6 Standard error of extremum counting and mean-value 
crossing measurements as a functionof sampling density. 

 

 
Fig. 7  Probability distribution of peak heaights in the 
transmission spectrum from a fixed analyzer measurement.  
The inset shows the detail at small values. 

 
Using this extremum pair algorithm, we evaluated 10 
000 simulated T(ω) data sets to which 0, 1, and 2% 
random amplitude noise was added.  The noise was 
from a triangular distribution with, for example, 1 % 
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referring to the maximum noise amplitude with 
respect to the maximum extent of T(ω).  In Fig. 7, we 
show the sample distribution of peak heights for the 
noise free and 2% noise cases (measured at sampling 
density η = 2.7).  The most surprising feature is the 
large number of small peaks in the noise free data.  
As expected, the 2% noise curve shows that noise 
significantly increases the number of small peaks, 
and thresholding is necessary in order to avoid biases 
toward larger PMD.  So, in practice, noisy data will 
give too large a PMD value before thresholding and 
too small a PMD value afterward. 

 
Fig. 8  Fractional PMD (R = Measured PMD/True PMD) as a 
function of noise threshold for undersampled (η = 1.35) noise 
free and 2% noise data. 

 
Fig. 9  Fractional PMD (R = measured PMD/truePMD) as a 
function of noise threshold for oversampled (η = 10.77) noise 
free and 2% noise data. 

 
Figs. 8 and 9 show the effects of sampling density, 
noise and threshold on the measured PMD.   Fig. 8 
plots the ratio R = measured PMD/true PMD versus 
percent threshold level for undersampled data (η = 

1.35, nf  = 500) with 0 and 2% noise.   
 
Fig. 9 is the same format for oversampled data (η = 
10.77, nf  = 4000).  Comparing the two shows that 
oversampling dramatically increases the bias to 
measured PMD when thresholds are below the actual 
noise level, whereas in undersampled data, there is 
little effect at all due to noise.  For the noise levels 
tested, thresholds of ε > 4% yield measured PMD 
values which are independent of noise level. 
 
 
B. Compensation for Noise and Sampling Density 
 
The best approach to measurements in the presence 
of noise is to threshold well above the noise and then 
correct for the systematic bias due to the high 
threshold.  To study the correction factor, we 
simulated fibers with 〈∆τ〉∆ω values of 36.4, 58.2, 
145.6, and 371.5 and noise levels of 0, 1, and 2% 
(1000 fibers for. each of the 12 combinations).  Then, 
for each of these fibers, T(ω) was measured using 
sampling densities ranging from 1 to 10 in 0.5 
increments.  For each parameter combination, the 
ratio 
 

TruePMD
%)20(DMeasuredPM
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=
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 was calculated.  As mentioned, R is relatively 
independent of noise level.  The dependence of R on 
〈∆τ〉∆ω, η, and noise level is illustrated in Fig. 10. 
 

 
Fig. 10  Correction factor R = measured PMD (ε  = 20%)/ 
true PMD versus sampliing density for various values of 
〈∆τ〉∆ω  with and without 2% noise. 

 
The weak dependence on these parameters suggests a 



 

simple first-order correction factor using a midpoint 
value of Ravg = 0.69.  Measuring PMD using a 20% 
extremum threshold and then dividing by 0.69 will 
give a corrected PMD whose 2u systematic 
uncertainty (~95% confidence interval) due to 
sampling density and noise is below ±6.3% (if 
measurement parameters are within the limits of 36 ≤ 
〈∆τ〉∆ω ≤ 371, 1.5 ≤ 10 and noise ≤ 2%). 
 
If smaller systematic uncertainties are required, a 
two-step correction is recommended.  First, the 
±6.3% PMD estimate is obtained as just described.  
Then this value is used to calculate 〈∆τ〉∆ω and η.  A 
more accurate R(〈∆τ〉∆ω, η) can then be chosen from 
Table III.  Then, the original 20% threshold 
measurement of PMD is divided by the new 
R(〈∆τ〉∆ω, η) to get a PMD estimate with systematic 
uncertainties below ± 1.7% (2u).  We suggest using a 
linear interpolation for values of 〈∆τ〉∆ω which are in 
between those included in Table III.  The values in 
this table represent those R which we calculated 
based on our extremum counting simulations with 
various values of 〈∆τ〉∆ω, and  η. 
 
Table III 
R-Factor as a Function of Sampling Density and PMD-
Bandwidth Product 

〈∆τ〉∆ω 
η 

36.4 58.2 145.6 371.5 

1 0.648 0.661 0.677 0.679 
1.5 0.667 0.678 0.694 0.696 
2 0.672 0.685 0.700 0.702 

2.5 0.673 0.685 0.701 0.704 
3 0.675 0.688 0.704 0.706 

3.5 0.676 0.688 0.704 0.707 
4 0.677 0.689 0.705 0.707 

4.5 0.677 0.689 0.705 0.707 
5 0.676 0.690 0.705 0.708 

5.5 0.677 0.689 0.705 0.708 
6 0.677 0.690 0.706 0.709 

6.5 0.677 0.690 0.706 0.709 
7 0.678 0.690 0.706 0.709 

7.5 0.678 0.690 0.706 0.709 
8 0.679 0.690 0.706 0.709 

8.5 0.678 0.691 0.706 0.709 
9 0.678 0.690 0.707 0.709 

9.5 0.679 0.691 0.707 0.709 
10 0.678 0.691 0.706 0.710 

 
For comparison, an uncorrected extremum counting 

measurement on data with 1% noise, using a 2% 
extremum threshold causes a 6-12% systematic 
uncertainty as illustrated in Fig. 11.  These 
corrections apply only to the systematic errors due to 
sampling density and noise.  The well-known random 
uncertainties of (5) and (6) still exist. 
 

 
Fig. 11  Systematic errors in extremum counting 
measurements as a function of sampling density for 1% 
noise level, measured with a 2% threshold (for small and 
large values of  〈∆τ〉∆ω). 

 
IV. CONCLUSION 

 
We have demonstrated here that fixed analyzer  
 
measurements made under typical conditions can be 
significantly biased.  Figs. 3 and 11 show that ~10% 
biases are easily, achievable.  Based on simulation 
results, we presented two correction techniques for 
these errors.  The first is a correction factor Ravg, 
which can be applied to reduce systematic uncer-
tainties to below ±6.3% over a broad range of 
measurement conditions.  The second technique is a 
two step process which estimates measurement 
conditions and then a more appropriate factor is 
applied to reduce systematic uncertainties to below 
±1.7%.  Finally, we found a 2% correction to the 
polarization mode coupling factor (commonly 
denoted k), changing its value to 0.805 from the 
previously accepted value of 0.824. 
 
 

APPENDIX A  
COMPUTER SIMULATION 

 
We simulated fiber PMD using the method of Poole 
and Favin [1] with a few changes.  Random 
birefringence in the simulated fibers was modeled by 
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a cascade of waveplates with randomly oriented axes 
and random differential group delay (DGD) between 
the fast and slow axes.  Let N be the number of 
waveplates and ∆τi be the DGD for the ith waveplate.  
For large N, the expected value of the PMD 〈∆τ〉 is 
given by [1] 
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i.  Poole and Favin used a fixed value 
of ∆τi = ∆τ0 in their simulations.  This assumption of 
constant DGD results in 〈∆τ〉2 =  and  = 0, 
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If we allow ∆τi to be uniformly distributed between 0 
and ∆τmax, then 2
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To determine whether to use the fixed or random 
differential group delays in the simulation, we 
conducted a Monte Carlo study.  For each fiber, we 
used N = 2700, ∆τ0  = 0.494 ps for the fixed DGD 
case, and ∆τmax = 0.494 3  = 0.8556 ps for the 
random case (to insure that the predicted PMD of the 
fiber is the same in the two cases).  The transmission 
spectrum T(ω), starting at frequency ω0 = 1.208 x 
1015 s-1 with 1000 equally spaced frequencies over a 
total frequency window of 2.5 x 2π x 1012 s-1, was 
obtained for both fixed and random DGD simulated 
fibers.  We simulated 1000 fibers for each case. 
 
Fig. 12 plots the mean of the 1000 simulated 
transmission spectra over the measured spectrum for 
fixed DGD.  It shows two spikes over the frequency 
range.  The spikes indicate the frequencies at which 
the retardance of each waveplate is a multiple of 2π.  
Our simulation was such that the "fiber" was situated 
between a pair of polarizers aligned parallel to each 

other.  So, at these 2πn retardance frequencies, the 
waveplate stack acts like an isotropic medium, and 
100% of the light is transmitted through the analyzer.  
(Had we used crossed polarizers, these spikes would 
have been dips.)  Since the theory yielding (1)-(6) 
relies on the assumption that the mean of the 
normalized transmission spectrum at any frequency is 
0.5, the validity of the simulation samples based on 
fixed waveplate DGD is questionable.  On the other 
hand, the mean of T(ω) for random DGD (Fig. 13) 
hovers around 0.5, indicating a good agreement 
between the simulated and theoretical means. 
 

 
Fig. 12  Mean of T(ω) averaged over 1000 fibers as a 
function of optical frequency from simulation using fixed 
waveplate DGD. 

 
Fig. 13  Mean of T(ω)  averaged over 1000 fibers as a 
function of optical frequency from simulation using random 
waveplate DGD. 

 
We also examined the distribution of the number Ne 



 

 of extrema and the number Nm of mean-value 
crossings from the 1000 simulated fibers for both 
cases.  Fig. 14 plots the smoothed probability density 
functions of Ne for the fixed (dotted line) and random 
(solid line) DGD.  It shows that the means of the two 
probability density functions are about the same 
(144.6 for fixed, 145.6 for random) but the standard 
deviations of the distributions are different (14.51 for 
fixed, 9.43 for random).  Similar results are also 
obtained for the distributions of Nm (Fig. 15), mean = 
91.0 for fixed, 92.3 for random, standard deviation = 
13.13 for fixed, 8.42 for random. 

APPENDIX B  
(THRESHOLDING ALGORITHM) 

 
Rejecting noise in an extremtun counting routine is 
more subjective than it may seem.  An effective 
algorithm must be able to reject the small extrema 
which are presumably due to noise while accepting 
the larger extrema.  In this study we used the 
following algorithm to accept or reject extrema based 
on their height relative to the maximum extent of the 
spectral data T(ω).  A pseudocode of the algorithm is 
given below.  It is assumed that all of the extrema in 
T(ω) have been located and sequentially indexed 
using a three-point algorithm where T(ωi-1) < T(ωi) > 
T(ωi+1) indicates a peak, and T(ωi-1) > T(ωi) < T(ωi+1) 
a valley at ωi.   

 

 

right = index_of_global_max 
candidate = right -1 {test extremum to left of global 
max} 
left = candidate -1 
base = 1 {global max is a peak} 
loop: 
 δr = abs(T[right] - T[candidate]) 
 δl = abs(T[left] - T[candidate]) 
 if (δr > ε and δl > ε) then 
  {candidate is a good peak or valley}  
  num_of_true_extrema = num_of_true_extrema +1  
  right = candidate 
  candidate = right - 1  
  left = candidate - 1  Fig. 14  Probability density functio for extremum counts 

measured via simulations using random (solid line) and fixed 
(dashed line) waveplate DGD. 

  base = - base 
 else 
  if (T[left -1]*base ≤ T[candidate]*base) then  
   candidate = left -1 

 

   left = candidate -1 
  else 
   left = left - 2  
  end if 
 end if 
 
The base type 1 (-1) indicates that the current 
extremum is a peak (valley) and the target for peak 
thresholding with cutoff value s is the adjacent valley 
(peak). The algorithm is for scanning to the left of the 
global maximum. A similar algorithm for scanning to 
the right of the global maximum can be easily 
obtained. The complete listing of the Fortran program 
used can be obtained by contacting the authors. 
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