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Electronically tunable fiber laser for optical pumping of 3He and “He
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We present in this paper a low threshold, highly stable, integrated fiber laser cavity that uses an
electronically tunable internal Bragg grating. The fiber laser produced over 5 mW with a spectral
width of about 5 GHz at 1083 nm. The laser was used to achieve 30% polarization of$ne 2
metastable states 8He in a weak rf discharge cell. @996 American Institute of Physics.
[S0034-674806)01601-3

Fiber lasers have considerable potential as sources faectly into the Nd-doped fiber using UV interferente.
laser spectroscopy. Multilongitudinal-mode Nd-doped fiberContinuous-wave UV light was produced at 244 nm by
lasers have been used for spectroscopy 6f&r1092 nm  frequency-doubling argon-ion laser light in an external reso-
“He at 1083 nnt,Yb™ at 935 nnt and for atmospheric ab- nant cavity. The UV light was split into two beams and re-
sorption spectroscopy in the range of 1065-—1145“nm.combined to form an interference pattern in the fiber. Expos-
Single-longitudinal-mode Er-doped fiber lasers operatingng the fiber for 23 min to an intensity of 44 W/émroduced
near 1530 nm have been used in spectroscopy,df (Ref.  a Bragg grating of 70% reflectance with a full width at half-
5) and Rb® These fiber laser systems used bulk tuning elemnaximum bandwidth of 0.3 nm. The peak of the reflectance
ments such as diffraction gratings, prisms, Lyot filters, andvas positioned 1 nm below the wavelength of the He meta-
etalons. The bulk elements can be replaced with Bragg restable transitions to allow tuning of the fiber laser by stretch-

flection gratings in the core of optical fibemaking an all- ing the grating with a PZT translator.
fiber laser cavity. These lasers have lower losses and should  The pumping source used in the experiment was an 810
be relatively insensitive to vibration. nm diode lasel1X3 m emittej capable of producing 100

The Schearer Laser Laboratory at the University of Mis-mW of output power. The diode laser light was collimated
souri has been developing Nd-doped bulk laser systems opvith a 6 mmfocal length lens, and the ellipticity of the beam
erating at 1083 nm for optical pumping of tAee and®He  was corrected using an anamorphic prism pair. After collima-
metastable statésRecently this laboratory has been investi- tion, the pump beam was launched into the fiber laser cavity
gating the miniaturization of such laser systems for their opusing a 25.6 mm focal length lens and150 mm focal
eration in®He magnetometers and have shown that fiber lalength steering lens combination.
sers are capable of tuning over the He transitions of intérest.  Before the Bragg grating was written into the fiber, a
However, in that series of experiments the fiber laser waslifferent laser configuration using an output coupler consist-
tuned with the use of an external cavity and therefore wasng of a collimator and a 93% reflectance mirror was inves-
not a serious contender for use in He magnetometers. Wigated. The spectrum of this laser had a 16 nm bandwidth
present in this paper the first use of a Nd-doped fiber lasetronsisting of a large number of modes operating simulta-
incorporating an internal Bragg grating for the optical pump-neously. In contrast to this, the fiber laser bandwidth after the
ing of “He and®He metastable states. This laser offers con-grating was written into the fiber core was less than the 0.04
siderable cost reduction and has higher stability than th@m resolution of the monochrometer. Even at maximum
diode-pumped Nd:LMA solid state lasers commonly used. pumping, the fiber laser developed no satellite modes and

We used a 60 cm length of a SiGGeQ fiber contain- was extremely stable in both power output and wavelength.
ing Nd1° The core diameter was approximately 3. with ~ The spectral output of the fiber was further investigated us-
a NA of 0.21; the absorption of the fiber at the 810 nming a Fabry—Perot spectrum analyzer. This revealed that the
pumping wavelength was approximately 1.96 dB/m. Asfiber laser was operating in many longitudinal modes sepa-
shown in Fig. 1, a 1-mm-thick mirror, antireflection coatedrated by approximately 170 MHz.
for the pumping wavelength andt99% reflectance at the Figure 2 shows a plot of the fiber laser output power
lasing wavelength, was butted against the fiber to form therersus diode lasgpump output power. The maximum out-
rear of the cavity. The output reflector of the cavity was aput power of the fiber laser was over 5 mW when the output
6-mme-long fiber Bragg grating. The grating was written di- of the pump laser was 100 mW. Based on measurements
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made with a similar undoped fiber, we estimate that the over- "% " " 0

all coupling efficiency of the diode laser pump light into the PZT position (um)
fiber was about 22%. Due to the high reflectance of the
Bragg grating and the very low additional loss in the laser FIG. 3. Plot of fiber laser wavelength as a function of PZT position.
cavity, the fiber laser began lasing when the diode laser
reached threshold.
Tuning of the fiber laser was achieved by gluing a 17Doppler-broadened He transitions, since BheandD,, lines
mm section of the fiber laser containing the Bragg grating tovere not resolved. The wavelength span was calibrated using
a custom designed translator that used both a manual mihe known separation between the transitions. From the
crometer for rough stretching and a PZT capable ofu8®  idth of theD, line, the spectral width of the fiber laser was
expansion for fine tuning. Voltage was applied to the PZTyatermined to be approximately 5 GHz.
with a smgle power supply or a computer-controlled voltage The optical pumping capabilities of the fiber laser were
source. Smcg the peak wavelength of the ungtretched B.ra%vestigated by inserting a linear polarizer and quarter-wave
grating was just below the He resonance lines, the fiber o . . . .
: plate combination to produce right-circularly polarized light.
needed to be stretched less thanw3f to achieve the 1 nm ) .
wavelength shift required. Figure 3 shows a plot of the ﬁberTh_e fiber laser yvag then tuned .to they transmor? anq a
laser wavelength as a function of PZT position. The fiberNiform magnetic field was applied along the direction of
laser tuned smoothly without significant power fluctuationsl@ser beam propagation. By monitoring the change in fluo-
over the entire 1 nm range. rescence while switching the magnetic field on and off, we
The output from the fiber laser was collimated and sengletermined that 30% polarization of tHde metastable
through a 2.5-cm-diam, 3-cm-long fiHe discharge cell states was achieved using this system.
driven at 25 MHz. The pressure in the cell was about 133 Pa  The author acknowledges the support of a National In-
(1 Torr). The fluorescence of the discharge cell was monistitute of Standards and Technology PREP Fellowship.
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