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Abstract – We present measurements of the power-dependent microwave surface impedance of

YBa2Cu3O7-δ thin films performed using patterned coplanar waveguide (CPW) resonators at

5.87 GHz and 76 K.  We compare these resonator measurements with third-harmonic generation

measurements performed on CPW transmission lines of the same geometry patterned onto the

same thin-film sample at the same frequency and temperature.  We find that the power-

dependent surface reactance Xs(Prf) is directly related to the magnitude of the generated third-

harmonic signal, indicating a common origin for both of these manifestations of nonlinearity in

high-temperature superconductor (HTS) devices.  These results are consistent with the nonlinear

response generated by a current-dependent penetration depth λ(J), which provides a material

limitation on the linearity that can be achieved in any practical HTS microwave device.
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Microwave devices fabricated from high temperature superconductors offer many

performance advantages due to the very low values of surface resistance obtainable in these

materials [1].  As a result, high temperature superconductor (HTS) materials are currently being

used to build radio receiver filters that have low insertion loss, extremely sharp skirts, and high

interference rejection [2],[3].  When combined with cryogenically cooled low-noise amplifiers,

HTS filters enable the manufacture of very high performance receiver front ends for wireless

base stations [4].  For such telecommunications applications, component linearity is a key

concern.  Compared to devices fabricated from normal metals, HTS devices have been shown to

generate larger nonlinear interference products (higher-order harmonics and intermodulation

products), which are undesirable and can ultimately compromise the benefits of using HTS

components [1].  Efforts to minimize nonlinear effects have been hampered both by a lack of

theoretical understanding of the origin of the nonlinear response in HTS devices and by

experimental studies that yield widely varying results in many different device geometries that

are difficult to compare quantitatively [5]-[11].

To minimize the nonlinear response of HTS microwave components, it is helpful first to

understand the nonlinear response of the HTS material.  To address this issue, there has been

much recent work [7],[10],[12]-[15] examining the nonlinear (rf power-dependent) surface

impedance, since a nonlinear surface impedance will generate nonlinear interference in any

practical device.  However, there have been relatively few studies that examine both the power-
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dependent surface impedance and higher-order harmonic or intermodulation product generation

in the same sample (see Ref. [7] for a work that does address both effects).  In this work we

examine the power-dependent surface impedance [Zs(Prf) = Rs(Prf) + iXs(Prf), where Rs and Xs are

the surface resistance and reactance, respectively] of patterned coplanar waveguide (CPW)

resonators using on-wafer probe station measurements and a high power network analyzer.  We

then compare the Zs(Prf) measurements with third harmonic generation measurements on the

same sample, and show that the power-dependent surface reactance Xs(Prf) of the CPW

resonators is directly related to the magnitude of the generated third-harmonic signal in CPW

transmission lines of the same geometry at the same frequency.

We are able to describe the above results in terms of a current-dependent penetration

depth λ(J) that can be used to quantify the nonlinearity of the HTS material.  We find that the

form of the current-dependent penetration depth inferred from these microwave measurements

agrees well with λ(Jdc) reported on unpatterned HTS films by low-frequency mutual inductance

measurements [16].  Knowledge of λ(J) enables the comparison of the nonlinear response of

different materials, since both the magnitude of generated harmonics and the power-dependent

surface impedance depend on the specific geometry of the device studied, and can be

meaningfully compared only in identical devices.  These measurements therefore demonstrate a

direct connection between nonlinear device performance (third harmonic generation in CPW

transmission lines) and the power-dependent surface impedance (Zs(Prf) in CPW resonators),
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both of which can be described quantitatively by a material-dependent property (current-

dependent penetration depth λ(J)).

2.  Power-dependent surface impedance measurements

In order to obtain the power-dependent surface impedance Zs(Prf) of HTS thin films, we

use on-wafer measurements of patterned CPW resonators in a cryogenic microwave probe

station.  We also fabricate a complete multiline through-reflect-line (TRL) calibration set [17] in

the same geometry as the resonator on the same thin-film sample.  This allows us to perform on-

wafer calibrations and subsequently obtain calibrated S-parameter measurements of the resonator

under test.  We also use the multiple transmission lines of different lengths in the TRL

calibration set to measure third harmonic generation in the same sample as the resonator used in

the power-dependent surface impedance measurements.

Our HTS samples are c-axis–oriented thin films (typically 400 nm in thickness, and

10 mm x 10 mm in area) of YBa2Cu3O7-δ (YBCO) grown on LaAlO3 substrates by pulsed laser

deposition.  For the measurements described here, we use a CPW geometry with a center

conductor linewidth of 21 µm, and a gap spacing (the gap between the center conductor and

ground planes on either side) of 40 µm.  The CPW resonator is 7.096 mm in length, and coupling

is achieved with capacitive gaps of 100 µm in the center conductor. The TRL calibration set

consists of a 0.2 mm long through line, three transmission lines of different lengths (from

0.7 mm to 7.744 mm) as well as a short-circuit reflect.  The YBCO films typically have a
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superconducting transition temperature (measured resistively) of Tc > 90 K, and mutual

inductance measurements of the penetration depth on a companion sample give λ = 341 nm at

76 K.  Probe station measurements of the CPW resonator at 76 K give a resonant frequency f0 of

5.87 GHz and an unloaded quality factor Q of 2330. Simulations [18] of this geometry are used

to extract a value for the surface resistance at 76 K, scaled to 10 GHz, of Rs = 440 µΩ.

Before performing high power measurements, we first make calibrated low-power

measurements of the resonator under test at 76 K.  We perform a multiline TRL calibration [17]

using the calibration artifacts on the same wafer as our resonator. The multiline TRL calibration

allows us to eliminate the effects of cabling, microwave probes and contacts, and places the

reference plane for the calibrated S-parameter measurements on-chip at the location of the

capacitive coupling gaps to the resonator.  The reference impedance for the calibrated S-

parameter measurements is set to 50 Ω by comparison to a TRL calibration of a well-

characterized gold calibration set on quartz [19].  Using the on-wafer calibration scheme allows

us to accurately measure the insertion loss of the resonator, which is used to determine the

average microwave currents flowing in the resonator.  We perform the calibration only at low

powers – the transmission coefficient measured at high power is simply scaled by the appropriate

amount, determined by comparing the transmission coefficient measured with and without the

low-power calibrations (see Fig. 1).  The TRL calibration also allows us to determine the
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characteristic impedance and inductance per unit length of the CPW transmission lines [20],

which will be used in the subsequent analysis of Zs(Prf).

In order to perform complex S-parameter measurements at elevated microwave powers,

we use a vector network analyzer test set that is specifically modified to enable higher signal

powers [21].  Briefly, this test set makes the rf signal accessible at the source so that it can be

passed through an external amplifier and back into the test set before the reference signal is

sampled.  We use this modified test set with a solid state amplifier in order to provide powers up

to 23 dBm at the test ports (dBm is not an SI unit; it is related to a power of 1 mW as 10 log x,

where x is in milliwatts). Typical network analyzer test sets allow powers only up to 0 dBm at

the test ports.  This modified test set requires isolators to be inserted into the signal path in order

to protect the forward/reverse transfer switch from high powers.  Since the test set samples the

reference signal after amplification, it is possible to obtain full complex transmission coefficient

data without the need to characterize the gain and phase delay of the amplifier.

Figure 1 shows the magnitude of the transmission coefficient of the 21 µm linewidth

resonator measured at 76 K as the incident power is increased from –8 to +22 dBm.  The power

incident on the probe station is measured separately as a function of the internal source power

using a power meter, and corrections are made for the insertion loss of the probe station cables

and coplanar probes, which is determined from the low power on-wafer calibrations.
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Figure 2 shows the relative change in 1/Q and resonant frequency f0 as a function of the

incident power.  We plot ∆(1/Q) and ∆f0 because these quantities are proportional to the change

in surface resistance and reactance, respectively.  The resonant frequency and quality factor are

determined from the full complex S21 vs. frequency data by a nonlinear least-squares fit to the S21

phase vs. frequency data [22].  We believe that this method of extracting Q and f0 is more

reliable than determining these quantities from the magnitude S21 data alone, particularly at

higher powers.  Note from Fig. 2 that the relative change in 1/Q is much larger than the relative

change in f0.

In order to compare our power-dependent resonator measurements with harmonic-

generation experiments in a transmission line geometry, we need to calculate the change in the

inductance and resistance per unit length of our resonator as a function of the average rf current

in the resonator.  To accomplish this, we note that the relative change in resonant frequency f0

and quality factor Q is proportional to the relative change in the inductance ∆L and resistance ∆R

per unit length, respectively, of the CPW resonator:

∆ ∆

∆ ∆

f

f

L

L

Q
Q

R

R

0

0

1
2

1

≈ −

⋅ 



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≈
   . (1)

To calculate the change ∆R or ∆L (which is required to calculate harmonic and intermodulation

product generation) it is necessary to know the total inductance per unit length (L in Eq.(1)).
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Once L is obtained, R can be determined from the relation for the unloaded quality factor

Q = ωL/R.

We use the calibration comparison technique [19] to obtain the characteristic impedance Z0

of our CPW transmission lines.  The characteristic impedance can be combined with the

propagation constant γ determined from the multiline TRL calibration to obtain the distributed

circuit parameters R, L, C per unit length [20] as a function of frequency for the 21 µm wide

transmission lines, under the assumption that the conductivity per unit length of the transmission

lines can be neglected.  Figure 3(a) shows the measured (low-power) inductance per unit length

at 76 K, along with the results of a calculation [23] for L(ω) using the transmission line geometry

and the measured penetration depth.  The total resistance per unit length R can in principle also

be determined by the same calibration comparison method, but in practice it is difficult to obtain

with transmission line measurements because R is small compared to the other circuit parameters

ωL and 1/ωC.  Figure 3(b) shows the real part of the characteristic impedance Z0, which will be

used below to help determine the average current in the resonator.

In addition to determining ∆R and ∆L from the relative change in Q and f0, it is also

necessary for the calculation of harmonic and intermodulation product generation to determine

the average current in the resonator from the measured incident microwave power.  We note that

for a resonator of length l the current flowing in mode n is given by [24]

I z I
n z( ) = 



0 sin

π
l

   ,  (2)
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where z is the direction along the length of the resonator.  The peak current I0 is given by

I
r r Q P

n Z
V V

0
0

1 8
=

−( )
π

   ,  (3)

where Q is the unloaded quality factor, Z0 is the characteristic impedance, P is the incident

power, and rV is the voltage insertion ratio, which is related to the insertion loss IL by

IL = –20log(rV).  In order to compare the Zs(Prf) results measured in a resonator geometry with

harmonic generation measured in a transmission line geometry, we need to calculate the average

rf current Iavg, defined by

 I

I z dz

dz
avg =

( )∫

∫
0

0

l

l    . (4)

Using Eqs. (2) and (3) in Eq. (4) we obtain the following relation between the average current

and the incident power:

I
r r Q P

n Zavg
V V c=

−( )2 1 8

0π π
   .  (5)

In Eq. (5), the quantities rV, Q, and Z0 are all experimentally determined.  We determine Z0 at the

resonant frequency by the calibration comparison technique, which was described previously for

determining the total inductance per unit length L (see Fig. 3(b)).  The quantity rV is determined

from the insertion loss, which we are able to determine accurately from our calibrated S-

parameter measurements of the resonator under test.  In principle, all of these quantities also
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change as the power is increased;  in practice we measure the Q and insertion loss as a function

of incident power, but we assume that the characteristic impedance Z0 does not change

significantly with increasing power.  In this manner we are able to determine the average current

flowing in the resonator from the measured incident power.

Figure 4 shows the rf-current dependent quantities ∆R(I) and ∆L(I), which are

respectively the resistance per unit length and the inductance per unit length, at a frequency of

5.87 GHz and a temperature of 76 K.  It can be seen from this figure that the nonlinear

contribution from the reactance is larger than that from the resistance for virtually all measured

powers.  This is to be expected for a superconducting transmission line, where the linear

reactance per unit length ωL is much larger than the linear resistance per unit length R.  Note that

the resistance and reactance per unit length for the CPW transmission lines are related to the

surface resistance and surface reactance for the thin film by a simple geometry factor [18].

However, it is the resistance and inductance per unit length that are the relevant quantities for

calculating harmonic and intermodulation product generation in transmission lines.  In order to

quantify the nonlinear inductance, we fit L(I) in Fig. 4 to a quadratic form L(I) = L0 + L’I 2, and

we obtain for the nonlinear coefficient ωL’ = 934 Ω/(A2•m).  It is this quantity that we will

compare with harmonic generation results in our CPW structures.  The determination of ωL’

from the data in Fig. 4 depends sensitively on what portion of the data is included in the
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quadratic fit–the extracted value of ωL’ ranges from 980 to 803 Ω/(A2•m) as more or less data

are included in the fit.

3.  Third harmonic and intermodulation product generation

Once we obtain the nonlinear contribution to the resistance and inductance per unit length

for our CPW transmission lines, we should be able to directly calculate the magnitude of the

higher harmonics and intermodulation products generated by this nonlinear impedance.  In what

follows, we will calculate the third-order harmonics and intermodulation products generated by

the nonlinear inductance shown in Fig. 4.  Although practically it is the third-order

intermodulation products that are of concern in actual applications, we show below that the third-

order intermodulation products and third harmonics are very closely related.  We will for now

ignore the nonlinear resistance ∆R(I) since it is smaller than ω∆L for all measured powers.  We

will then compare the calculated magnitude of the third-harmonic signal with measurements of

third-harmonic generation in the CPW transmission lines of variable length that make up the

TRL calibration set on the same chip as the resonator discussed earlier.

We have previously calculated [25] the magnitude of the third harmonic signal generated

by a nonlinear inductance (per unit length) of the form

L I L L I L L I( ) = + ( ) = + ′0 0
2∆    .   (6)

We repeat the calculation here using the value for L(I) determined from Fig. 4.  We begin by

calculating the voltage across the inductor of length l described by Eq. (6):
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V t L
dI t

dt
L

dI

dt
L I
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dt
( ) = ( ) = + ′l l l0

2    .   (7)

For the driving current we assume a two-tone stimulus of the form

I t I t I t( ) = ( ) + ( )1 1 2 2cos cosω ω    .   (8)

We now substitute Eq. (8) into Eq. (7) and calculate the voltage generated by the nonlinear term

in Eq. (7).  The full expression for the nonlinear contribution to the voltage V(t) is given by

∆V t
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Note from Eq. (9) that the coefficients of the third harmonic terms (sin3ω1t, sin3ω2t) are identical

to the coefficients of the third-order intermodulation terms (sin(2ω2-ω1), sin(2ω1-ω2)) at their

respective frequencies, if the drive signals are the same (I1 = I2).

If we now consider the case of just a single input tone at frequency ω1, the generated third

harmonic signal at frequency 3ω1 is given by

V
L I

t3
1 1

3

14
3ω

ω ω= ′ ( )l
sin    .   (10)

In order to compare with measurements of third-harmonic generation, we need to calculate the

power generated at frequency 3ω1 in a transmission line of characteristic impedance Z0:

 P
V V

Z Z

L I
3

0 0

1
3 2

2
1

2 4ω
ω= ⋅ = ′





* l
   .  (11)
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If we make the identification that the power in the fundamental is given by P1 = I1
2•Z0/2, then we

can write the expression for P3ω in terms of P1

P
L

Z
P3

0
2

2

1
3

2
= ′









ω l
   .   (12)

If we now take the logarithm of Eq. (12) we obtain

log log logP
L

Z
P3

0
2 12

2
3= ′







 +ω l

   .   (13)

Equation (13) says that if we plot the magnitude of the generated third-harmonic signal as

a function of the power in the fundamental on a log-log plot, we should observe a straight line of

slope three with an intercept specified by the first term in Eq. (13).  For third-harmonic

measurements one typically specifies the third-order intercept point IP3, which is related to the

y–intercept b on the log-log plot by logIP3 = -(b/2).  This specification of the third-order intercept

point gives the power in the fundamental where the line of slope 3 (describing the third

harmonic) would intercept a line of slope 1 and intercept 0 (describing the power in the

fundamental).  We can obtain a value for IP3 for the nonlinear inductor from Eq. (13):

log logIP
Z

L3
0
22=
′ω l

   .  (14)

This expression gives us a measurable quantity (IP3) in terms of the parameter ωL’, which we

determined previously from the power-dependent resonator measurements.  Conversely, we can

analyze third-harmonic generation data to extract a value for ωL’ to compare with the value

obtained from the resonator measurements.  We can therefore compare the results of our power-
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dependent resonator measurement with third-harmonic measurements by measuring the third

order intercept IP3.

Our measurements of third-harmonic generation are described in Ref. [25].  For CPW

transmission lines in the cryogenic probe station, we measure the transmitted power in the

fundamental at frequency f, the second harmonic at frequency 2f, and the third harmonic at

frequency 3f, all as functions of incident power.  We determine any background contributions for

the second and third harmonics by measuring a normal metal (silver) transmission line at

cryogenic temperatures.  For the powers used for the superconducting transmission lines, we see

no measurable background third harmonic, although a background second harmonic appears at

the highest input powers, just above our noise threshold, which is approximately –130 dBm.

Figure 5 shows the generated third harmonic signal as a function of the power in the

fundamental for four transmission lines of different lengths at f = 5.87 GHz and T = 76 K.  All of

the transmission lines have the same nominal geometry as the resonator discussed previously.

Immediately apparent from Fig. 5 is that the measured power in the third harmonic increases

with a slope 3 on the log-log plot as predicted by Eq. (13) for all of the lines measured.  This

makes it possible to describe the third-harmonic data for each transmission line by specifying its

third-order intercept point IP3.  The inset to Fig. 5 shows the third-order intercepts IP3 plotted as

a function of line length.  The solid line shows a fit to the data using Eq. (14), where we have

allowed the parameter L’ and a length offset to vary. (We allow the length to vary in the fit
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because all of our 21 µm transmission lines include a tapered section that transforms from a

probe-compatible geometry to the desired 21 µm geometry.  Therefore the measured third-order

intercepts should be analyzed as a function of the difference in line lengths, not absolute

lengths.)  We observe no second-harmonic signal within the resolution of our measurement

system for the four transmission lines measured.

From the fit to the IP3 data in Fig. 5, we obtain ωL’ = 825 Ω/(A2•m), which compares

favorably with the value obtained from the power-dependent resonator measurements,

ωL’ = 934 Ω/(A2•m).  An uncertainty in the fit given in Fig. 5 of ± 0.5 dBm gives a range of

values for ωL’ of 735 – 925 Ω/(A2•m).  The differences in the two determinations of ωL’ could

be due to errors in the experimental determinations of these quantities, or could reflect detailed

differences between the resonator and transmission line geometries used in the respective

measurements.  Nevertheless, the demonstration of the quantitative agreement between these two

different determinations of the nonlinear response for an HTS microwave device is significant.

4.  Determination of λ(J)

While the above comparison shows very good agreement between the two different

measures of nonlinear effects in HTS devices, the quantity ωL’ is specific to the geometry of the

transmission lines and resonators studied.  In order to compare the nonlinear response of our

YBCO material to that of other materials, it would be helpful to specify the magnitude of the

nonlinear response in terms of a material property.  This can be accomplished by noting that a
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nonlinear inductance of the form of Eq. (6) can be generated by a current-dependent penetration

depth of the form [26]

λ λ2 2

0

2

1T J T
J

J T
,( ) = ( ) +

( )

















   .   (15)

The parameter J0 is the nonlinear scaling current density, and quantifies the nonlinearity of the

superconductor.  We calculate the inductance per unit length from the expression [26]

L
H J dS

JdS
=

+( )
( )

∫
∫

µ λ0
2 2 2

2    ,   (16)

where the integration is carried out over the cross-section of the planar transmission line.

Substituting Eq. (15) into Eq. (16), we obtain for the nonlinear contribution to the inductance

′ = ( ) ′
L

T

J

µ λ0
2

0
2

Γ
   ,   (17)

where Γ’ is a geometrical factor given by

′ =
( )
∫
∫

Γ
J dS

JdS

4

4    .   (18)

The geometrical factor Γ’ can be calculated if the current distribution for the planar circuit used

is known.  For the CPW geometry investigated here, we use a numerical calculation [23] to

determine the current density at 76 K, and then determine Γ’ based on Eq. (18).

Once we have calculated the geometry factor Γ ’, we can use Eqs. (17) and (18) to

calculate the material parameter J0 from both of the microwave frequency experiments described
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above.  From the power-dependent resonator measurements, we obtain J0 = 21 MA/cm2, based on

ωL’ = 934 Ω/(A2•m).  From the third-order intercept measurements, we obtain J0 = 22 MA/cm2,

based on ωL’ = 825 Ω/(A2•m).  These values of J0 agree well with values of J0 for YBCO thin

films determined by mutual inductance measurements and reported in Ref. [16].

5.  Conclusions

In conclusion, we have demonstrated a technique by which we are able to measure the

power-dependent surface impedance of superconducting YBCO thin films in a patterned CPW

resonator.  The degree of nonlinearity is determined by measuring the nonlinear contribution to

the transmission line inductance.  The degree of nonlinearity extracted from the power-

dependent resonator measurements agrees well with same quantity extracted from third-

harmonic measurements of CPW transmission lines of the same geometry at the same frequency

and temperature.  Furthermore, both microwave frequency results are consistent with a model

based on nonlinearity arising due to a current-dependent penetration depth.  We believe that

these two different determinations of the nonlinearity of HTS thin films will contribute toward

determining a limit on the linearity of general HTS microwave devices, and could also facilitate

the further minimization of the nonlinear response of HTS materials.
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Figure Captions

Fig. 1.  Magnitude of transmission coefficient S21 vs. frequency, for a YBCO coplanar

waveguide resonator at 76 K, for increasing microwave power.  The S21 curve measured at low

power is corrected using an on-wafer TRL calibration scheme.

Fig. 2.  Relative change in (a) the resonant frequency and (b) the quality factor of a YBCO

coplanar waveguide resonator at 76 K as a function of incident microwave power.

Fig. 3.  Frequency dependence of (a) the inductance per unit length and (b) real part of the

characteristic impedance of YBCO coplanar waveguide transmission lines at 76 K.

Fig. 4.  Nonlinear contribution to the resistance and reactance per unit length calculated from the

power-dependent resonator measurements at 5.87 GHz.  Both quantities are plotted as a function

of the average rf current flowing in the resonator.  The solid line is a quadratic fit to the current-

dependent nonlinear reactance.

Fig. 5.  Measured power in the third-harmonic signal as a function of power in the fundamental

signal for four YBCO coplanar waveguide transmission lines of different length at 76 K.  Data is

shown for lines of length 0.704 mm (circles), 1.96 mm (diamonds), 3.08 mm (squares), and

7.744 mm (x’s).  The solid line shows a fit to a line of slope three for the 7.744 mm line.  The

inset shows the third-order intercept IP3 plotted as a function of line length.  The solid line in the

inset is a fit to the length dependence given in Eq. (14).
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