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A Nonlinear Least-Squares Solution with Causality
Constraints Applied to Transmission Line
Permittivity and Permeability

Determination

James Baker-Jarvis, Richard G. Geyer, and Paul D. Domich

Abstract—A technique for the solution of 1-port and 2-port
scattering equations for complex permittivity and permeability
determination is presented. Using a nonlinear regression pro-
cedure, the model determines parameters for the specification
of the spectral functional form of complex permittivity and
permeability. The method is based on a nonlinear regression
technique using the fact that a causal, analytic function can be
represented by poles and zeros. The technique allows the ac-
curate determination of many low- and high-permittivity di-
electric or magnetic materials in either the low- or high-loss
range. Permeability and permittivity can be obtained either
from fitting all scattering-parameter data or by fitting S, or S,
or |S,,| and |S;| data by itself. The model allows for small ad-
justments, consistent with the physics of the problem, to inde-
pendent variable data such as angular frequency, sample
length, sample position, and cutoff wavelength. The model can
determine permittivity and permeability for samples where
sample length, sample position, and sample holder length are
not known precisely. The problem of local minima is discussed.

Keywords—Dielectric measurements, higher order modes,
microwave, orthogonal distance regression, permeability, per-
mittivity, primary mode.

I. INTRODUCTION

OMBINED permeability and permittivity determi-

nation using transmission line fixtures has been stud-
ied extensively over the years [1]-[6]. The theory under-
lying linear n-ports for inverse scattering problems has
been worked out decades ago. Since then numerical strat-
egies have been employed in the reduction of 1-port and
2-port scattering data for both nonmagnetic and magnetic
materials. The vast majority of the work in this area has
involved the determination of permittivity and permeabil-
ity by the reduction of scattering data on a frequency-by-
frequency or point-by-point basis, that is, by the explicit
or implicit solution of a system of nonlinear scattering
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equations at each particular frequency. (See [2]-[4]. As
an example of a multifrequency approach see [51.) What
is lacking in the literature are practical, robust, numerical
reduction techniques for accurate determination of per-
mittivity and permeability in transmission lines. Reliable
broadband permeability and permittivity resuits for low-
loss, medium-to-high dielectric constant materials are
hard to obtain with transmission line techniques. Coaxial
line measurements are particularly hard to obtain due to
the effects of air gaps and overmoding. Traditional trans-
mission line numerical techniques have difficulties to the
extent that they render these techniques of limited use for
low-loss materials and for high dielectric constant mate-
rials.

Difficulties arise with these methods for magnetic ma-
terials in that numerical singularities can occur at fre-
quencies corresponding to integral multiples of one-half
wavelength. These instabilities arise from the fact that in
the limit of very low loss at frequencies corresponding to
one-half wavelength in the material, both S,: and Sy re-
duce to equations for determination of the phase velocity
only. In this limit the permittivity and permeability there-
fore enter as a product. In point-by-point short-circuit line
or open-circuit line 1-port measurement techniques, either
measurements on two samples or two positions must be
obtained. This is problematic since samples are often
slightly inhomogeneous and cannot be machined in a to-
tally reproducible manner. There also are uncertainties in
locating the positions precisely for two-position measure-
ments. Another problem pertains to high-dielectric con-
stant materials. High dielectric constant materials are usu-
ally hard to measure since the theoretical models are
limited to a single, fundamental mode; however, the data
contain both fundamental and higher mode responses. Im-
perfections in either the sample or sample holder promote
mode conversion from the fundamental mode into higher
modes. These generated higher modes propagate only in
the sample and are evanescent outside. Evidence of the
existence of the higher modes becomes apparent at reso-
nant frequencies of the modes where the sample acts as
resonant cavity. At these frequencies there is a noticeable
dip in the S, parameter due to resonant absorption.
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Point-by-point reduction techniques for magnetic ma-
terials contain large random uncertainties due to the prop-
agation of uncertainties through the equations. For non-
magnetic materials the propagation of errors is less of a
problem.

In our search for better reduction techniques we have
found that nonlinear processes, which minimize the square
error, are a viable alternative solution. Optimization-based
data reduction has an advantage over point-by-point
schemes in that correlations are allowed between fre-
quency measurements. In nonlinear regression, if deemed
appropriate, it is not necessary to even include §y; in the
set of constraint equations. Another advantage of regres-
sion is that constraints such as causality and positivity can
be incorporated into the solution.

This paper presents a method for obtaining complex
permittivity and permeability spectra from scattering-pa-
rameter data on isotropic, homogeneous materials using a
nonlinear regression model. We solve the scattering equa-
tions in a nonlinear least-squares sense with a regression
algorithm over the entire frequency measurement range.
The complex permittivity and permeability are obtained
by determining estimates for the coefficients of a pole-
zero model for these parameters consistent with linearity
and causality constraints. The procedure has been suc-
cessfully used for accurate permittivity and permeability
characterization of a number of different samples where
point-by-point schemes have been found to be inadequate.
The details of the numerical method have been presented
elsewhere [6]. The problem applied to microwave mea-
surements is presented in this paper. The method can be
extended to the analysis of multimode problems and the
determination of experimental systematic uncertainty. The
novel features of our algorithm are summarized below.

e The algorithm finds a ‘‘best fit’”’ to the scattering
equations using a Levenburg-Marquardt nonlinear
least-squares solution for the permittivity and perme-
ability.

o The algorithm uses fitting functions that satisfy caus-
ality and energy requirements.

¢ The numerical technique allows slight variations in
the sample and reference position lengths to com-
pensate for measurement errors.

e The method allows the deemphasis of frequency
points with large phase uncertainty.

o Statistics related to the solution parameters are au-
tomatically generated.

e The technique can force positivity of the fit func-
tions.

e It is possible to determine both complex permittivity
and permeability from measurements of a single
scattering parameter on a l-port or a 2-port taken
over a frequency band.

II. SCATTERING PARAMETER RELATIONS

In the scattering formalism we develop in this section
we assume that the primary modes in the transmission line
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are TEM for coaxial line and TE, for waveguide. In the
analysis that follows we assume exp(jwf) time depen-
dence.

The complex permittivity is

e = ler — jekle, = €ke, 1)
and the complex permeability is
p=luk = jukluo = piko )

Here €, and p, are the permittivity and permeability of
vacuum, and e and p} are the relative complex permit-
tivity and permeability relative to air in the laboratory.
The propagation constant in the material is
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where A, is the cutoff wavelength in the waveguide mea-
surement fixture in air, c,,. and cy,, are the speed of light
in vacuum and the laboratory, respectively, and w = 27f.
The expression for the transmission coefficient z can be
formed in terms of the propagation constant

3

and in air
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where L is the sample length. A reflection parameter can
be defined as

z = exp (—vL),

Y,
EYo 4
KoY

for coaxial line 1/A. — 0. It is assumed that the total
length of the sample holder is

Liy=L+L +1L, )

where L is the sample length, and L, and L, are the dis-
tances from the calibration reference planes to the sample
faces, as indicated in Fig. 1. We assume that L, and L
are known to high accuracy, but L, and L, may not be
known precisely.

For a two-port device, the expressions for the measured
scattering parameters are obtained by solving a related
boundary value problem [7]. The transformation of the
scattering matrix (S) to the sample face requires a linear
transformation
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Fig. 1. A dielectric sample in a transmission line with regions I, II, and
I1I denoted. Port 1 and port 2 denote calibration reference plane positions.

The explicit expressions for the fundamental mode 2-port
scattering relations are given by

ra -z’
S = R} [%_—;;’} (10)
1 —-T%
Sth) = R'RZ{ZI—(——ITZZ)J =S\ (1)
. F 1 — 2
s0 = 13| 52| (12

where the scattering matrix is assumed to be measured at
the calibration plane. The reciprocity in (11) requires iso-
tropic and demagnetized materials. Also

R,

exp (—voLy) (13)

and

R, = exp (=volo) (14)

are rotation terms.

Another useful expression is the determinant of the
scattering matrix:
-z
1 -2
(15)

The problem is to determine the complex permittivity
and permeability from (10)-(12) or (15). We use various
combinations of (11)-(15) in our numerical methods.

For 1-port measurements the following equation is used
in the model [7]:

S11Sn — S8 = exp [(—2v,) Ly — )]

tanh yL + © tanh y,AL

eters, such as the lengths and cutoff wavelength, are
known accurately within the measurement uncertainty of
a measurement device.

Since it is not computationally feasible to treat all of
the permittivities and permeabilities at all the measured
frequencies as unknown quantities, the numerical model
uses an explicit frequency-dependent form for pu and €.
The general form for pj (w) and e (w) should be causal;
that is, it should satisfy a Kramers-Kronig relation. The
zeros and poles of a complex function determine the func-
tion.

The Laplace transform of the real, time-dependent per-
mittivity satisfies
oo

e(7, e dt.
0

e(7,s) = S (18)
For stability there can be no poles in the right half of the
s-plane. Since €(7) is real it can be shown that the poles
and zeros are confined to the negative real s-axis of the
s-plane, and the poles which are off the real s-axis must
occur in complex conjugate pairs [8].

The Debye model for materials uses the following
expression for permittivity:

4
"1 + jBw

*

e + C. (19)

In our present algorithm we use two approaches, the
first for magnetic materials and the second for nonmag-
netic materials. In the first model a series of poles of first

and second order is assumed for pj (w) and €} (w). This
expansion

A, Ay

f@ =Ag+ Z—— + L ———, (20

pup (w) o 71+ jByw 7 (1 +jBZiw)2 (20)
Ay Ay

Fw =Dy + L —— 4 2 — !

GR((:J) 0 1 +jBBiw i (1 +jB4iw)2 21

has generally yielded excellent results, where B; are real
numbers. The poles should all reside in the left half-plane.
In the algorithm a couple of poles per frequency decade
is assumed.

— ©(1 + O tanh L tanh y,AL)

"= fanh yL + O tanh yoAL

where
g = e
Yokt

and AL is the distance from the back face of the sample
to the short-circuit termination.

)

III. MODEL FOR PERMEABILITY AND PERMITTIVITY
DETERMINATION
Viewed from a formal aspect the unknown quantities
are L, L,, L, N\, u& (), and €} (w). Some of these param-

+ ©(1 + O tanh yL tanh y,AL)

(16)

The second model is used for dielectric materials:

(Jo + z,)

e = .
n (]w + pn)

(22)

Here z,, and p, are the zeros and poles.

For a typical measurement on a network analyzer there
may be 400 frequency points, and at each all four scat-
tering parameters (S-parameters) are obtained (although,
in practice, since within measurement error, S;; = Sy,
there are only three independent parameters). The prob-
lem is overdetermined since for n frequency measure-
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ments, there are (assuming lengths to be known accu-
rately) 6n real equations for the handful of unknown pole-
zero quantities.

For more complicated polarization phenomena other
relations for permittivity could be used:

' = U G

e = e, + [€(0) €oo) So T4 olr dr 23)

¢ = [e0) ~ € Sm @4 24)
=301+ Wi

where y(7) is a distribution function. It is possible to ex-
pand this distribution in terms of moments:
@

ew + [€(0) — €x) 2 SO (jon)"y(r) dr

! s 1

e —je' =
= € + [€(0) — €] éo S: Yy (j) " dr
(25)
= €0 + [€(0) — €a] Oi (=" (y") "

— J(=D"e©) — €l é (x"y o
(26)
where

(y" = S: 7"y(7) dr. @7

Therefore, the real part of the permittivity is an expansion
in terms of the even moments, and the odd part of the
permittivity is an expansion in terms of the odd moments.
The moments which promote a least-squares fit may be
found by the optimization routine. We currently use (20)-
(22) in our calculations.

The approach for determining the parameters 4; and B;
is to minimize the sum of the squares of the differences
between the predicted and observed S-parameters,

min

%8, - P,

y

, (28)

where the measured vectors are denoted by S i = (Sy(wy),
Silwa), =, Sij(w,)) and where P; is the predicted
S-parameter vector. Hence, the problem is of finding the
minimum normal solution to these equations.

IV. NuUMERICAL TECHNIQUE
A. Numerical Algorithm

The solution currently uses a software routine called
ODRPACK (orthogonal distance regression pack) [9] de-
veloped at the National Institute of Standards and Tech-
nology. This routine is an extended form of the Leven-
berg-Marquardt approach. This procedure allows for both
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ordinary nonlinear least-squares, in which the uncertain-
ties are assumed to be only in the dependent variable, and
orthogonal distance regression, where the uncertainties
appear in both dependent and independent variables. First-
order derivatives for the Jacobian matrices can be numer-
ically approximated (finite difference approximation), or
can be user-supplied analytical derivatives. The proce-
dure performs automatic scaling of the variables if nec-
essary, as well as determining the accuracy of the model
in terms of machine precision. The trust region approach
enables the procedure to adaptively determine the region
in which the linear approximation adequately represents
the nonlinear model.

Iterations are stopped by ODRPACK when any one of
three criteria is met. These criteria are: 1) the difference
between observed and predicted values is small, 2) the
convergence to a predicted value is sufficiently small, and
3) a specified limit on the number of iterations has been
reached.

Initial estimates for €5 and uj are obtained from ex-
plicit solutions [1], [10]. The most significant input pa-
rameters for modeling permittivity and permeability are
the initial values for 4; and B;. Sensitivity to the initial
solution for these parameters is discussed below. All ad-
ditional parameters are initialized to 0.

When measurements are taken of length and scattering
parameters of a sample there exist systematic uncertain-
ties in sample dimensional measurement, sample position
measurement, and machine measurement. An orthogonal
distance regression model provides the modeler with the
ability to assume that the independent variable, in this
case, frequency, may contain some uncertainty as well.
Allowances for these types of uncertainty can, in some
cases, greatly improve the approximation. For this partic-
ular model and the samples tested, the errors in the in-
dependent variables are sufficiently small that an ordinary
least-squares approximation is adequate.

Model parameters such as sample length, sample po-
sition in the waveguide, and cutoff wavelength could con-
tain a systematic uncertainty. These parameters were al-
lowed to vary over a limited region, and the optimization
procedure determines values for the parameters. This pro-
cedure assumes that systematic measurement €rrors can
be detected by the routine. For example, inserting a sam-
ple into a sample holder introduces an uncertainty in the
sample position L;, so we include with L; an additional
optimization parameter 8, in R, to account for position-
ing uncertainties:

R, exp (—vo[L + Bul)- 29

Also for R,:

Il

Ry = exp (=7, [L, + BrD- (30)

The routine requires that the length corrections be within
a predescribed range which represents physical measure-
ment uncertainty. The length of the sample L is com-
pletely determined by

L=L;— L +L,+ By + B (€2))
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Fig. 2. Predicted (solid line) and observed (dots) S-parameters for a bar-
ium titanate compound (a) and cross-linked polystyrene in (b).
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Fig. 3. Systematic uncertainty as indicated by the residual plot between
the observed and predicted values for a measurement of air.

and it is also implicitly parameterized by the values of 3,
and B;,.

Due to inaccuracies in machining of the sample holder
there is an uncertainty in the cutoff wavelength of the
guide. We account for this by the introduction of an ad-
ditional optimization parameter N\, = A, + 8,. We con-
strain this variation to be within measurement accuracy.

The model can use various combinations of the avail-
able data to estimate both the relative permeability and
permittivity from scattering data. For example, S,, or S,
alone can be used to obtain both permeability and per-
mittivity. This can be contrasted with point-by-point tech-
niques where both S;; and §), are required. Also, mag-
nitude alone can similarly be used. Magnitude data have
the advantage of requiring no reference plane rotation.
However, there is a price for using a sparse set of con-
straints. This price is that the number of alternative min-
ima increases as the constraint set decreases.

The technique works quite well for short-circuit line
measurements. For short-circuit line applications it is
possible with this technique to obtain both the complex
permittivity and permeability from a single broadband
measurement on one sample, at a single position in the
line.

B. Numerical Results

The model predictions are formed by inserting (20) and
(21) or (22) into the scattering equations (10) and (12) or
(16) and then finding the unknown coefficients in the
equations for ef and pj that produce the least-square er-
ror. In Fig. 2 the experimental results are given for a bar-
ium titanate compound and cross-linked polystyrene.
These samples required 21 and 40 iterations, respectively.
The difference between the predicted S-parameter and the
observed values reveals the presence of systematic uncer-
tainty, as shown in Fig. 3. Additional tests revealed the
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Fig. 4. Measured real part of §,,, measured (+ * - °) and predicted

( ), for a glass sample (a) with positioning error for L, and (b) the
solution when the algorithm adjusts for the positioning error.

source of the systematic error did not appear to be related
to the material tested in the waveguide. In fact, uncer-
tainties produced for the cross-linked polystyrene sample
closely resemble the S-parameter data for an empty wave-
guide. We conclude therefore that much of the systematic
error is due to calibration uncertainty and joint losses at
connector interfaces. This was later verified when we ob-
tained a new calibration kit and found that the systematics
decreased appreciably. Note that for the barium titanate
compound sample there are both the fundamental mode
response and smaller resonances related to higher order
modes. As shown in Fig. 2, the model interpolates a fun-
damental mode. This raises the possibility of extending
the model to incorporate higher order modes by extending
the theoretical formulation of the problem.

It is easy to move the sample in the holder inadvertently
when connecting the sample holder to the port cables. Po-
sitioning errors of the sample in the air line can result in
large errors in computed material parameters. The nu-
merical algorithm can adjust for positioning errors by ad-
justing L, or L, slightly. The effects of positioning error
can be seen in Fig. 4. In this example the routine pre-
dicted that the position of the sample was off by 0.8 mm.

V. PERMITTIVITY AND PERMEABILITY RESULTS

In this section we present the measured and calculated
permittivity and permeability results. Cross-linked poly-
styrene and the barium titanate compound are nonmag-
netic, and therefore uj = 1 for this problem. Comparison
of the optimized solution to a point-by-point solution is
shown in Fig. 5. In Figs. 6 and 7 the results for three
samples are displayed. As a check we made an indepen-

dent measurement of the barium titanate compound in an
X-band cavity, and the results were ez = 269 £ 5 at 10

GHz. This result can be compared to the results in Fig.
6.

Robustness of the Procedure

Since the transmission coefficient contains a periodic
component, there is more than one solution to the system
of equations. Each root of the equation has a neighbor-
hood around which convergence will occur for initial es-
timates in that region. The robustness of a mathematical
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Fig. 5. Permittivity for a leaded glass over 0.045-18 GHz for the opti-
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Fig. 6. Permittivity for barium titanate compound (a) and cross-linked
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Fig. 7. Permittivity and permeability for a ferrite loaded polymer. Point-
by-point method (- - - -), optimized solution ( ).

procedure is related to how well the algorithm treats the
neighborhood around the correct root. The existence of
alternative optima in the mathematical model requires a
reasonable initial guess (on the order of 10-20%) in order
to converge to the correct solution. Typically conver-
gence occurs after about seven iterations. The use of con-
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straints and the large number of equations enhance the
uniqueness of the solution by reducing the dimensions of
the solution space.

The numerical effectiveness of the entire permeability
and permittivity calculation depends on the robustness of
the ODRPACK procedure and, more significantly, on the
robustness of the mathematical model. For the materials
with low dielectric constant the procedure readily deter-
mined a solution for a variety of input values with a large
radius of convergence. For materials with higher dielec-
tric constant, the procedure often converged quickly, al-
though the existence of alternative local optima in the
mathematical model required some testing to make sure
that the converged root was the correct root. Group delay
is a useful tool [10].

VI. DiscussioN

An optimization approach to the solution of the scat-
tering equations appears to be a viable alternative to point-
by-point techniques. The technique allows a stable solu-
tion for a broad range of frequencies. The method works
particularly well for short-circuit line measurements. Un-
like the point-by-point short-circuit method which re-
quires measurements on two samples or in two positions,
the optimized solution can obtain complex permittivity
and permeability on a single sample at a single position,
although the solution may exhibit some alternative min-
ima.

The technique has been successful for many isotropic
magnetic and relatively high dielectric constant materials.
The reflection (S;,) data are usually of lesser quality than
the transmission data (S,;) for low-loss, low-permittivity
materials. Therefore, S;, need not be included in the so-
lution for low-loss materials. However, reflection data Sy,
and S,, at frequencies over 1 GHz are very useful in de-
termining the position of the sample in the air line as in-
dicated in Fig. 7. Adding constraints to the solution is
powerful in that it further limits the possible solution range
of the system of equations and enhances the uniqueness
of the solution. The use of analytic functions for the ex-
pansion functions allows a correlation between the real
and imaginary parts of the permittivity and permeability.
The results shown in Figs. 5-6 indicate that the method
can be used to reduce scattering data of fairly high di-
electric constant materials. In fact, we have found that in
some cases the optimized procedure yields solutions when
the point-by-point technique fails completely (for exam-
ple the barium titanate compound in Fig. (6)).
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The question arises as to why an optimization approach

can, in many cases, reliably reduce data on higher dielec-
tric constant materials (e > 20). A reason for this is that

scattering data for higher dielectric materials contain re-
sponses to both primary mode and higher modes. As in-
dicated in Fig. 2 for the barium titanate compound, the
optimization routine interpolates through the primary
mode data and is not unduly influenced by the higher mode
resonance data.

The optimized technique can be used to treat problems
where sample lengths, sample holder lengths, and sample
positions are not known to high accuracy. However, in
these cases there exist alternative minima. This result
could find application to high-temperature measurements.

Higher order modes propagate in samples when two
conditions are met. The frequencies must be above cutoff
in the sample, and there must be inhomogeneities or
asymmetries in the sample to excite the higher modes.
Higher order modes can be incorporated into this type of
model by letting the optimization routine select the power
in each mode.
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