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Abstract- We develop a coplanar-waveguide probe-tip scattering parameter calibration
based on a thru, a reflect, and an accurately modeled series resistor. Comparison to a2 multiline
Thru-Reflect-Line calibration verifies the accuracy of the method.

I. INTRODUCTION

We develop a calibration based on a short transmission line (thru), a symmetric reflect, and a
series resistor embedded in the line. We verify the accuracy of this series-resistor calibration in
coplanar waveguide (CPW) by comparing it to an accurate multiline TRL calibration.

While the multiline thru-reflect-line (TRL) calibration [1] accurately calibrates wafer-probe
stations, it requires long transmission line standards. Williams and Marks [2] introduced an accurate
and compact line-reflect-match (LRM) calibration with verified accuracy based on characterized
match and line standards. However, that LRM calibration requires identical match standards at the
two ports; this may require wafer rotation during the calibration. It is also difficult to model
accurately shunt resistors grounded with via holes.

In this paper we introduce a calibration that circumvents these problems. The calibration is based
on a thru, a symmetric reflect, and an accurately modeled series resistor embedded in a short length
of the line. The series-resistor model consists of simple, easily characterized lumped elements. A
single measurement of the embedding circuit (a series-open CPW test pattern) without the resistor
allows determination of all mode! elements except one; measurement of the dc resistance of the
series-resistor standard determines the last element. This procedure eliminates the requirement of
identical resistor standards on each port and in a microstrip environment also eliminates difficult-to-
model grounding via holes.

II. CALIBRATION ALGORITHM

We developed a flexible scattering parameter calibration algorithm for two-port network
analyzers to demonstrate the utility of series resistors as calibration standards. The algorithm uses a
measurement of a thru and any combination of measurements of previously characterized one-port
or two-port standards sufficient to determine the calibration constants of the network analyzer. The
algorithm treats the thru standard as ideal and its measurements as perfect and finds a least-squares
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solution to the remaining undetermined calibration constants from the other standards: these
standards set the calibration reference plane and reference impedance.

If we ignore switching and isolation errors, the relationship between the transmission matrix M,
of a two-port measured by the network analyzer and its actual transmission matrix T is

M =XT,Y, ®
where
Y=0VY'Q, (2)
01
= 3
oo[0!] o

and X and Y are the “error boxes” describing the imperfections in the analyzer and its connections
to the two-port. The calibration procedure determines X and Y from measurements M, of standards
with known transmission matrices 7,. Once X and Y are known, equation (1) is easily inverted to
determine the actual transmission matrix T of any circuit connected to the analyzer from its
transmission matrix M measured by the analyzer.

We can set either X or Y reciprocal without losing any generality of the model. We chose X to
be reciprocal, which allows us to write it as

1l a
b c

where r = (c-ab)™: this eliminates one unknown in X. We can use the fact that the transmission
matrix T of a thru line is the identity matrix to write ¥ as

Y=0M'XQ, (5)

, ()

xer|

where M is the transmission matrix of the thru measured by the analyzer. This eliminates four more
unknowns: only a, b, and c are still to be determined.

We use the additional measurements of one-port or two-port standards, or both, to determine
a, b, and ¢ with a least-squares algorithm. For two-port circuits, substituting (5) into (1) gives
M, M. X=X T, which imposes four conditions on the unknowns a, b, and c. These conditions are

Ty a+ (MiMr-l)lz b=T, - (MiMT-l)ll’ (6)
(MM )y -Ty 15 - Ty, ¢ = -MM),, (7)
(MM, -T,la + MM, ¢ =T, 8

and
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MM ")y a-T, b+ [(MM™),,-Ty]c = 0. )

One-port standards place the two constraints

a-T),b-T,c=-T, (10)

and
LT, -(M )y la+ [T (M)~ ()06 + L [T (M) - (M 7))

11)

= (M-r_l)zl "Ffz(Mr-l)ll

on the unknowns q, b, and ¢, where I, is the actual reflection coefficient of the one-port, I, is its
measured reflection coefficient when it is connected to the first port of the analyzer, and I, is its
measured reflection coefficient when it is connected to the second port of the analyzer. The reference
impedance of the matrices T, and reflection coefficients I'; and I, must be consistent and set the
reference impedance of the calibration.

When enough reflective and transmissive standards have been measured, these equations will
overdetermine a, b, and c. There are many ways to solve for these overdetermined parameters; we
used a conventional least-squares fitting algorithm [3]. This approach averages errors and avoids
numerical problems due to the linear dependence of the unknowns in (6), (7), (8), and (9).

ITI. CALIBRATION ARTIFACTS

We fabricated CPW standards on a gallium arsenide substrate to support both TRL and series-
resistor calibrations. The CPW's were made by evaporating a 50 nm thick adhesion layer of titanium
followed by a 500 nm thick gold film onto a 500 pm thick gallium arsenide substrate; the center
conductor was 64 um wide and was separated from two 261.5 pm wide ground planes by 42 ym
gaps. The TRL CPW standards consisted of a thru line 0.550 mm long, five longer lines of length
2.685 mm, 3.750 mm, 7.115 mm, 20.245 mm, and 40.550 mm, and symmetric shorts offset 0.225 mm
from the beginning of the CPW. The series-resistor standards consisted of a 128 pm long by 64 pm
wide nickel-chromium thin-film resistor placed in the center of a 0.550 mm long CPW line.

IV. RESISTOR MODELS

The calibration requires that we know the actual transmission matrix T, for each two-port
standard. We assessed the accuracy of the series-resistor calibration using two different models to
generate the series-resistor’s matrix T,. Figure 1 shows the two series-resistor models. The first model
in Fig. 1(a) assumes that the series-resistor’s impedance is just its measured dc resistance R,

The second series-resistor model in Fig. 1(b) takes into account some of the circuit parasitics and
the resistor’s distributed nature. Here the embedding circuit is modeled as a transmission line with
a gap in the middle of the center conductor, as shown in the test circuit of Fig. 1(c). C, represents the
capacitance across the gap in the center conductor, while C, is the end (or fringing) capacitance of
each center conductor to ground. When R, =0 the model reduces to a thru for small A/.
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We determined C, and C, by measuring the S-parameters of the test circuit of Fig. 1(c) with a
multiline TRL calibration. This measurement needs to be performed only once for a particular
waveguide geometry. For our CPW and series-resistor circuit geometry, we obtained C,=4.8 fF and
C.=1.7 fF. We determined the capacitance C, per unit length of CPW from a measurement of a
matched load using the method of [4]. We then set A/=C,/C, so that when R, = the model agrees
with the open circuit test structure of Fig. 1(c). Once C, and A/ are set in the model, the only
additional measurement required for each individual series-resistor standard is its dc resistance Ry,
which is easily measured.

V. ACCURACY

We assessed the accuracy of our series-resistor calibrations by comparing them to a multiline
TRL probe-tip calibration using the method of [5], which determines the upper bound for |S %, - S|,
where S ; are the S-parameters of any passive device measured by the series-resistor calibration and
S are the S-parameters measured by the TRL calibration. The bounds are valid for ije {11, 21, 12,
22} when |S,,| < 1, |S,] < 1 and |S), S,,| < 1. We set the reference plane of each calibration at the
center of the thru and the reference impedance to 50 Q.

Figure 2 shows the measurement error bound for a typical series-resistor calibration as the curve
marked with circles compared to our 50 Q2 TRL reference calibration. Here R,= 223.7 Q and we used
the dc resistor model of Fig. 1(a); the bounds for similar calibrations using series resistors in the range
of 51 to 267 Q2 were comparable to that shown in the figure. The curve marked with triangles is
the measurement error bound for a representative LRM calibration that also models the match
standards as a dc resistance: the error bound is comparable.

Also shown for comparison as a dashed curve is the measurement error bound due to instrument
drift, calculated from TRL calibrations performed at the beginning and end of the experiment. We
found that the series-resistor calibration error bound is much higher than that due to instrument drift,
which suggests that the series-resistor calibration might be improved by using a better electrical model
for the resistor element. '

The curve in Fig. 2 marked with dots shows the improvement in the measurement error bound
upon application of the distributed series-resistor model of Fig. 1(b): using this model reduces the
error bound by approximately a factor of two relative to the bound using the dc model. We observed
a similar improvement for the other resistors investigated in the experiment upon applying the
distributed model.

VI. CONCLUSIONS

We used a simple but general algorithm to investigate an automatic network analyzer calibration
based on a thru, a reflect, and a series resistor that is sufficiently accurate for many MMIC
applications. The accuracy of a typical series-resistor calibration is comparable to an LRM calibration
in CPW when we used a simple dc model for the resistor standards. A distributed model improves
the accuracy of the series-resistor calibration substantially. This improved model can be implemented
in a compact on-wafer series-resistor calibration set with the addition of only a simple series-open
circuit.
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Fig. 1. Series-resistor circuit and models. The measurement reference plane is at the center of the
circuit. (a) series-resistor standard and simple model; (b) series-resistor standard and distributed
model; (c) circuit used to measure and determine C, and C..
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Fig. 2. Measurement error bounds for two implementations of the series-resistor calibration and a
conventional LRM calibration relative to a TRL calibration. The error bound due to test set drift
and contact errors is shown for comparison.
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