Quasi-TEM Model for Coplanar Waveguide on Silicon
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Abstract This paper compares a simple quasi- is equal to the characteristic impedangg of the
TEM model for coplanar waveguide fabricated on transmission line [10], to a multiline TRL reference
moderately doped silicon substrates to measurement. calibration with reference impedance correction [11]
While the coplanar waveguide currents and magnetic determinesZ,. ThenL, C, R, andG are found from
fields are unaffected by the substrate, a simple Rt+jwlL =vZ,and G+jwC=y/Z,.

capacitive model can accurately account for the effects In this work we apply this method to CPW fabricated
of the substrate. on moderately doped silicon substrates using CPW
reference lines fabricated on semi-insulating gallium
INTRODUCTION arsenide. These reference lines had a metal thickoéss

0.5 um and center conductor widttof 73 um separated
We apply the calibration comparison method [1], [2]from two ground planes of widtll,=250 um by gaps of
to directly measure the resistanBe inductancel,  Width s=49 um.
capacitanceC, and conductanc& per unit length of

coplanar waveguide (CPW) fabricated on silicon INDUCTANCE AND RESISTANCE
substrates and show that the model of Fig. 1 accurately
determinesC andG. We first investigated thé, R, C, and G per unit

Kwong, et al. [3], Seguinot, et al. [4], and Ko, et al.  length of the three CPWs of [2] fabricated directly on
[5] have proposed closed-form expressions for analyzing  silicon substrates. These CPW conductors were formed b
CPW on silicon substrates. However the analysis of [3]  evaporating a thin titanium adhesion layer followed by
requires some finite-difference calculations, the models of  approximately 0.5 um of gold directly on three different
[3] and [4] neglect the capacitance through the silicon  silicon substrates. To assure the maximum measuremen
substrate, and Wiliams, et al. [6] point out some accuracy, [2] used the same metal geometries and metal
difficulties in the analysis of [5]. Here we compare to  thickness as the reference wafer.
measurement the model of Fig. 1, which is based on Figure 2 of [2] conhpanedR for these CPWSs to
closed-form expressions from [3], [5], [7], and [8] and that of the CPW fabricated on the semi-insulating gallium
accounts for substrate capacitance, conductance, and  arsenide reference wafer and sh®waad lthatre

fringing fields. insensitive to changes in the substrate. This indicates that
the magnetic fields in the CPW are not affected by these
MEASUREMENTPROCEDURE moderately doped substrates: the currents are still confined

to the metals.

Reference [2] showed how to use the calibration
comparison method [1] to accurately determine the CAPACITANCE AND CONDUCTANCE
inductance L, capacitanceC, resistanceR, and
conductances per unit length of printed transmission Figure 2 shows the capac{faamoe conductand®
lines. A multiline thru-reflect-line (TRL) calibration [9]  per unit length of the CPW measured in [2]: this figure
measures the line’s propagation constardirectly. A shows thatC and G are changed by the substrate
comparison of this calibration, whose reference impedance  parameters. It also compares the measuCemnents of
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G to the results of the simple quasi-TEM model of Fig. 1 estimates the measured CPW capacitance accurately; its
and shows good agreement. This model attribDtesdG  ability to account for the capacitance of the passivation

to the properties of the silicon substrate and the thickness  layer suggests that it could be used to estimate it
and dielectric constant of the native oxides or depleted  dielectric constant.

regions between the metals and the silicon substrate: the
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Fig. 1. The capacitive model used in this work. Keithe center conductor widthithe gap widthy, the ground-plane
width, t the metal thicknes, ande; the thickness and permitivity of the lower oxide or depleted layert,zanae, the
thickness and permitivity of the passivation layer. The expressid#{igs,w,t) is given in (1) of [8]. The expressions
for w ands’ are taken from [7].
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Fig. 2. The modeled and measufedndG for three CPWs fabricated directly on silicon. (Measurements from [2].)
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Fig. 3. The modeled and measurédl of CPW with and without a thick SjO passivation layer.
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