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Abstract– We describe a linearization of 

large-signal scattering functions describing 
weakly nonlinear device behavior. The 
linearization takes on a convenient form 
similar to scattering parameters that clearly 
illustrates the role of phase-conjugated 
mixing products in the theory. We develop 
rules for the evolution of the linearization 
with time. We illustrate the theory with 
transistor measurements, and apply the 
theory to the characterization of the 
reflection coefficients of a microwave source 
in its large-signal operating state. 

 
Index terms– Frequency translation, large 
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generator. 
 
 
 

INTRODUCTION 
 
References [1] and [2] describe a 

linearization relating the large-signal forward 
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and backward wave coefficients at the ports of a 
weakly nonlinear time-invariant device. By 
weakly nonlinear, we mean that the output 
signals of the device are a stable, single-valued, 
and continuous function of the input signals 
around the large-signal operating point, and that 
the output signals only contain spectral 
components having frequencies which are linear 
combinations with integer coefficients of the 
frequencies present in the input signals. The 
linearization is used to describe nonlinear device 
behavior in terms of a large-signal steady-state 
operating point and a set of approximate linear 
relations between the real and imaginary parts 
of the small input and output signals 
superimposed on that operating point. In this 
work we rewrite the linear relations described in 
[1] and [2] in a form similar to the conventional 
scattering-parameter matrices used to 
characterize the behavior of linear devices. This 
intuitive form clarifies the differences between 
conventional scattering parameters and the 
linearization we present here. 

Perhaps the most successful and widely used 
linearization used to describe weakly nonlinear 
behavior in the microwave regime was 
developed by Torrey, Whitmer, and Goudsmit 
[3] in 1948 to explain the electrical behavior of 
microwave mixers. Maas later summarized and 
expanded upon this theory in [4]. The theories 
of [3] and [4] explain the first-order behavior of 
microwave mixers with “conversion matrices” 
relating small frequency-domain voltages and 
currents or forward and backward wave 
coefficients at a set of discrete frequencies. 

More recently, references [5-9] intorduced 
“Hot” scattering parameters to describe the 
electrical behavior of weakly nonlinear devices 
and amplifiers operating under large-signal 
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excitation. However, as we shall see later, the 
standard implementations of Hot scattering 
parameters fail to correctly describe the 
behavior of the phase-conjugated mixing 
products generated by even weakly nonlinear 
devices and amplifiers.1 

Here we present a complete development of 
the theory described in [1] and [2] in terms of 
the Jacobian of a “large-signal scattering 
function.” This Jacobian also finds use in 
harmonic-balance simulators [11]. We then 
rewrite that linearization in a form similar to the 
traditional scattering parameters used to 
describe linear circuits and devices, yielding an 
intuitive and useful description of the first-order 
nonlinear behavior of weakly nonlinear devices 
and circuits. 

We also lift the restrictions of harmonically 
related frequencies and the special time 
reference employed in [1] and [2], and present 
general transformations between different time 
references, completing the theory. 

Finally, we show that the theory 
encompasses the conversion-matrix approach 
for describing mixer behavior developed in [3] 
and [4], and includes the phase-conjugated 
mixing products missing from the Hot-
scattering-parameter description of [5-9]. We 
illustrate the theory with the characterization of 
a high-electron-mobility transistor and the 
development of a new technique for measuring 
the reflection coefficients of a microwave 
source in its large-signal operating state. In both 
cases we show the importance of capturing the 
phase-conjugation behavior of nonlinear devices 
in the linearization. 

 
LARGE-SIGNAL SCATTERING FUNCTIONS 

  

                                                 
1 Reference [10] recently introduced “large-signal 

scattering parameters.” The large-signal scattering 
parameters [SJ] of [10] are defined via B = [SJ] A, where�
A and� B are vectors containing large-signal wave 
coefficients, and do not correspond to any of the 
linearizations discussed here. 

Reference [1] begins with a large-signal 
scattering function ℑ relating signals incident 
upon and reflected by a weakly nonlinear time-
invariant device at a set of harmonic 
frequencies. We define the nonlinear large-
signal scattering function ℑ somewhat more 
generally than in [1] by 

 
)1(,)(AB ℑ=  

where A and B are vectors containing the wave 
coefficients of the large-signal incident 
(exciting) and reflected (response) waves at all 
of the ports of the device and at all of the 
frequencies present in the system. The 
frequencies in A and B may or may not be 
harmonically related, depending on the 
application. We also do not restrict the reference 
impedance of these wave coefficients. However, 
we note that interpreting the wave coefficients 
and quantities derived from them is much more 
straightforward when they are set real [12]. 

We linearize (1) around a stable single-
valued and continuous operating point of ℑ by 
writing A and B as A = A0 + a and B = B0 + b, 
where B0 is the large-signal steady-state 
response to the large steady-state excitation A0, 
and b is the response to a small excitation signal 
a superimposed on A0. 

When ℑ describes a linear time-invariant 
device, ℑ is analytic, and A and B can be 
related by a linear scattering-parameter matrix 
[S]linear via B = [S]linearA. It then follows that B0 
= [S]linearA0 and b = [S]lineara as well. 
Furthermore, the elements of [S]linear relating 
wave coefficients at different frequencies 
vanish. The class of linear time-invariant 
electrical devices is very large, and includes 
most passive microwave circuit elements. In 
addition, most active microwave transistors and 
amplifiers are designed to operate in a linear 
regime, and their electrical behavior can be 
described by a linear scattering-parameter 
matrix [S]linear. 

However, the scattering function ℑ 
describing the electrical behavior of a weakly 
nonlinear device is generally not analytic, so 
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even in the weakly nonlinear case we cannot 
relate A and B, or even a and b, with linear 
scattering-parameter matrices. The inability of 
scattering parameters to approximate the 
response of weakly nonlinear circuits to even 
small excitation signals has been long 
appreciated in the computer-aided-design 
community [11]. 

Even so, when the elements of a and b are 
small, we can use the Jacobian [J] of ℑ of a 
weakly nonlinear device evaluated at A0 and B0 
to approximate the real and imaginary parts of 
the small response b to the real and imaginary 
parts of the small input signal a. 

Thus, for weakly nonlinear circuits, we can 
approximate b from a with  
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where X = Re(X) + jIm(X) and the symbol ��
indicates that this relation will only hold 
approximately when all of the elements of a are 
small. Here [J] is a real Jacobian matrix formed 
from the first partial derivatives of the real and 
imaginary parts of B with respect to the real and 
imaginary parts of A evaluated at A0 and B0. 
Harmonic-balance simulators often use this 
Jacobian and Newton’s method to iteratively 
solve nonlinear problems [11].  

Defining [S] and [S'] with 
 

[ ] [ ] [ ] [ ]( )( )
[ ] [ ] [ ] [ ]( )( ) )3(,

][

][

RIIRIIRR2
1

RIIRIIRR2
1

JJjJJS

JJjJJS

++−=′
−++=

 

 
we can rewrite (2) as 
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The total response B can then be approximated 
as 
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Equations (3) shows that there is a one-to-

one correspondence between the complex 
elements of [S] and [S'] and the real elements of 
the Jacobian matrix [J] of ℑ. Thus we see that 
(4) is, in fact, a rather straightforward 
linearization of ℑ containing, as expected, the 
(2n)2 real numbers of the Jacobian [J], where n 
is the dimension of a and b. The essential 
difference between the form of (2) and (4) is 
that (4) has been rearranged in terms of complex 
input and output vectors a and b, rather than the 
real column vectors of (2). 

Finally, for completeness, we note that we 
can write the matrices [G] and [H] defined in [1] 
by b = [G] Re(a) + [H] Im(a) as [G] = [S] + [S'] 
and [H] = j([S] � [S']).  

It is perhaps best to think about the 
linearization as a pair of pairs. The first element 
of the pair is {A0, B0}, which describes the 
large-signal operating point at which the 
linearization was performed. A0 and B0 by 
themselves contain a wealth of information 
about the large-signal operating state of the 
weakly nonlinear device. The second element of 
the pair is the linearization described by {[S], 
[S′]}. The matrices [S] and [S′] describe how the 
device responds to additional small input signals 
superimposed on A0 and B0. 

The matrix [S] reduces to the small-signal 
scattering parameters [S]linear of a device when 
the device is linear and time invariant, and it 
relates elements of b directly to elements of a. 
As the phase of an element in a increases, the 
corresponding phase of the elements in b will 
increase as well. 

However, as a device enters its nonlinear 
regime of operation, the elements of [S] relating 
different frequencies to each other will become 
nonzero. In addition, even weakly nonlinear 
devices usually create mixing products at both 
sum and difference frequencies of the input 
signals. Mixing products that include a 
difference frequency are particularly 
problematic, as increasing the phase or 
frequency of an input signal can result in a 
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decrease in the phase or frequency of an output 
signal. This behavior will be described by the 
matrix [S′] in (4) and (5). This extra degree of 
freedom is required to complete the 
linearization, and it allows the linearization to 
apply to all first-order mixing products 
generated by a weakly nonlinear device.  

Note that the matrix [S′], which relates 
elements of b to the conjugate of elements of a, 
does not appear in the earlier efforts of [5-9] to 
develop a linearization capable of describing the 
electrical behavior of weakly nonlinear devices. 
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TRANSLATING THE TIME REFERENCE 

  
Reference [1] determines [G] and [H] with a 

time reference that sets to zero the phase of the 
component of A corresponding to the input 
signal at the fundamental frequency in the 
harmonic spectrum incident on the device. This 
choice of time reference simplifies the form of 
ℑ, allowing it to be more easily measured with a 
large-signal network analyzer. 

However, this choice of time reference 
complicates the application of the theory when 
A0 contains several large signals at different 
input frequencies that are not harmonically 
related. For example, the steady-state large-
signal operating point of a device could be 
determined by a signal with a number of tones 
at nearby frequencies that have no common 
fundamental frequency. This commonly occurs 
in two-tone distortion measurements. 

Even when the signal that sets up the large-
signal operating point of the device has a well-
defined fundamental frequency, choosing the 
time reference based on this fundamental 
frequency can still be problematic. For example, 
it becomes difficult to predict the effect of a 
small input signal at the fundamental frequency 
that is in quadrature with and superimposed 
upon the large fundamental component of the 
input signal. While the large signal at the 
fundamental often sets the operating point and 
time reference, applying a small signal in 
quadrature with the fundamental actually shifts 
that time reference. Furthermore, that time shift 
depends on the strength of the quadrature signal 
superimposed on the fundamental. Thus the 
linearization as derived in [1] cannot predict the 
response to this quadrature signal without 
additional computations that take into account 
this shift of the time reference. 

Here we choose a different approach. Rather 
than setting the time reference to the phase of 
one particular component of A0, we allow any 
choice of time reference and relate A0, B0, [S], 
and [S′] at that time to those same quantities at 

any other time. This formalism simplifies the 
application of [S] and [S′] and allows [S] to 
reduce to the conventional scattering parameters 
of linear time-invariant devices in a natural way.  

We can relate the complex frequency-domain 
vectors of wave coefficients A(t), B(t), A0(t), 
B0(t), a(t), and b(t) at time t to A(t0), B(t0), 
A0(t0), B0(t0), a(t0), and b(t0) at time t0 with 

 
)6(,)()( 0

)( 0 tet ttj XX −−=  

 
where X in (6) can be replaced by any of A, B, 
A0, B0, a, or b, and  is the diagonal matrix of 
angular frequencies of each of the elements of�
X. 

Using (6) and (1) we obtain the relation 
 

( ) ( ) )7(.)()( 0
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Relation (7) is a direct consequence of the time 
invariance of the device, and therefore, of its 
large-signal scattering function ℑ. 

Using (6) and (4) we obtain 
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and 

 
[ ] [ ] )9(.)()( )(

0
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The unexpected negative sign in the second 
exponent in (9) arises from the temporal 
behavior associated with the conjugate of a in 
(4). 

These formulas allow [S] and [S′] to be 
determined at a new time t once they have been 
determined at some specific time reference t0. In 
practice, they allow us to characterize the device 
with one choice of time reference (typically but 
not necessarily with the phase of a fundamental 
input frequency set to zero), and then later use 
the characterization with any choice of time 
reference. 
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DETERMINING [S] AND [S′] AT A PARTICULAR 

OPERATING STATE 
 
Clearly [S] and [S’] determined at a particular 

large-signal state operating point A0 and B0 can 
be used to predict the performance of a weakly 
nonlinear device only when | A � A0 | << | A0 | 
and | B � B0 | << | B0 |. The first step to 
predicting the performance of a weakly 
nonlinear device embedded in a circuit is to 
measure [S] and [S’] at some particular A0 and 
B0 that we are able to create with our 
measurement instrumentation. In our numerical 
implementation we determine [S] and [S’] at a 
particular operating point A0 and B0 with linear 
least-squares regression from large-signal data 
taken by a large-signal network analyzer near 
A0 and B0, as described in the appendix. This 
procedure is robust and easily programmed. 

The actual large-signal operating state is 
often not known precisely beforehand. Thus, 
during device characterization, we must often 
measure A and B at a number of operating 
states and interpolate [S] and [S’] over a space of 
operating points. The numerical implementation 
of the method described in [1] and [2] used 
artificial neural networks to interpolate [S] and 
[S’] to the desired operating point from the set of 
operating points at which the device was 
measured. This allows additional flexibility in 
finding an [S] and [S’] that best match the actual 
operating point of devices. For example, this 
procedure can be used to determine [S] and [S’] 
at an operating point� corresponding to an 
impedance-matched condition even though the 
measurement instrumentation is not perfectly 
matched. 
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USE OF [S] AND [S′] TO PREDICT DEVICE 

PERFORMANCE 
 
The appearance of the matrix [S′] in (4) does 

not allow the usual formulas familiar to the 
microwave community to be employed for 
predicting the performance of a weakly 
nonlinear device when it is embedded in a larger 
circuit or system. Instead, a circuit simulator 
must be used to predict device performance. 
However, it is possible to develop fairly 
straightforward formulas for predicting the 
electrical behavior of a weakly nonlinear device 
embedded in a strictly linear time-invariant 
circuit or system containing sources. 

Defining [�s] as the diagonal matrix of 
reflection coefficients presented to the device by 
the linear external circuit in which it is 
embedded and As as the source amplitudes 
generated by the external circuit and incident on 
the device, then A, B, �s, and As must satisfy 

 
[ ] )10(.ss ABA += �  

 
This linear relation simply expresses the 
constraints imposed on A and B by the 
reflections [�s] and sources As of the external 
circuit. 

Substituting 
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which is a direct consequence of (4), into (10), 
we obtain 
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where [I] is the identity matrix. We can solve 
(12) directly by rewriting it in terms of its real 
and imaginary parts. This yields the linear 
matrix equation 
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We can now estimate a directly by solving (13), 
and thus predict the first-order behavior of the 
device when it is embedded in the external 
linear circuit. 
 

ROLE OF [S′] IN MIXER CHARACTERIZATION 
 

We alluded previously to the crucial role that 
the matrix [S′] plays in representing the phase-
conjugating behavior of mixing products 
generated by the vast majority of weakly 
nonlinear devices. In the following section we 
will present some examples illustrating the role 
of [S′] in the theory. These examples show 
convincingly that both [S] and [S′] are required 
to describe the response of weakly nonlinear 
devices to small excitations. 

 
Mixers: Torrey, Whitmer, and Goudsmit [3] 

introduced the notion of conversion matrices to 

Doubler
LO

Port 1

CirculatorMixer

IF

IMAGE

Port 2

 

Fig. 1. A microwave phase conjugator. The frequency 
at both ports of the phase conjugator must be the 
same. The frequency of the input signal at port 1 is 
doubled before being fed into the local-oscillator (LO) 
port of the mixer. The circulator routes the wave 
incident on port 2 to the IF port of the mixer, where it 
mixes with the doubled LO and generates an image 
signal at the same frequency. The image signal is then 
routed by the circulator back to port 2, where it 
appears as a reflected wave. Increasing the phase of 
the wave incident on port 2 decreases the phase of the 
reflected wave on port 2. 

Fig. 1. A microwave phase conjugator. The 
frequencies at both ports of the phase conjugator must 
be the same. The frequency of the input signal at port 
1 is doubled before being fed into the local-oscillator 
(LO) port of the mixer. The circulator routes the wave 
incident on port 2 to the IF port of the mixer, where it 
mixes with the doubled LO and generates an image 
signal at the same frequency. The image signal is then 
routed by the circulator back to port 2, where it 
appears as a reflected wave. Increasing the phase of 
the wave incident on port 2 decreases the phase of the 
reflected wave on port 2. 



 8 

describe the electrical behavior of diode mixers. 
Maas summarized the approach of Torrey, 
Whitmer, and Goudsmit in [4], and defined an 
“S matrix,” which we will call [SM], from [SM] ≡ 
(1+ [Yn])

-1(1-[Yn]), where [Yn] is the diode’s 
conversion (admittance) matrix. 

Maas identifies port 0 with the mixer’s IF 
port and port 1 with the mixer’s RF port. In 
equation (4.87) of [4], Maas describes the 
behavior of an RF mixer with 
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In our notation we can express (14) as 
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where [S′]=0.2 

While increasing the phase of the signal at 
the IF port of an RF mixer increases the phase 
of the signal at the RF port of the mixer, it 
decreases the phase of the signal at the image 
(IM) frequency. Maas identified port -1 with the 
mixer’s image port. Maas’ equation (4.88) of [4] 
describes the response of an image mixer to 
small input signals as 
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In our notation this is expressed as 

 

                                                 
2 The zeros in the last column of [S] reflect the fact that 
the effect of changing either the amplitude or phase of aLO 
has only a second-order effect on the signals at the IF and 
RF ports. While the effect of changing aLO on the IF and 
RF signals is not available in this first-order linearization, 
we can use (8) to predict how [S] will change as we 
change to a new time reference, which is equivalent to 
changing the phase of the LO. 
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where we have defined a and b with a = (aIF, 
aIM, aLO)T and b = (bIF, bIM, bLO)T, and where the 
superscript T indicates the transpose. Here [S′] 
is required to describe the decrease of the phase 
of the image signal due to an increasing phase 
of input at the IF port. Similar relations have 
been developed by the computer-aided-design 
community relating the Jacobian [J] to the 
conversion matrices of [3] and [4]. 

These relationships demonstrate the ability of 
the linearization discussed here to describe the 
basic electrical behavior of microwave mixers. 
In fact, the electrical behavior of any device that 
can be described by the conversion matrices of 
[3] and [4] can be equally well described by [S] 
and [S ��  
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Fig. 2. Vector plots of the measured output wave 
coefficient b2 as a function of the phase of the small-
signal wave coefficient a2 incident on a high-electron-
mobility transistor. The phase of a2 is swept through 
360 degrees for a number of input drive levels. The 
markers indicate measured data. The arrows indicate 
the direction with which the phase of b2 changes in 
response to an increase in the phase of a2. The solid 
lines indicate the trajectories derived from the fit of 
S22 and S22 � �����	�
	��
�	������� If S22 ������	��������
of the trajectories would lie on circles and rotate in the 
counter-clockwise direction. 
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Phase conjugator: Phase conjugators find 
use in optical telecommunication systems and as 
elements in reflective self-focusing antenna 
arrays [13]. Figure 1 depicts a microwave phase 
conjugator. Port 2 of the microwave phase 
conjugator reflects a wave whose phase 
decreases as the phase of the signal incident on 
that port increases. 

We can express the response of the ideal 
microwave phase conjugator of Fig. 1 to small 
input signals with 
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Here again, [S′] is required to describe the 
decrease of the phase of the signal reflected by 
the phase conjugator when the phase of the 
incident wave increases. 
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TRANSISTOR CHARACTERIZATION 

 
Transistors and amplifiers typically generate 

harmonics and mixing products at their output 
when operated near saturation. Both [S] and [S′] 
are required to characterize their performance in 
this regime. 

To illustrate this, we tested a high-electron-
mobility transistor biased for maximum gain 
with a Hewlett-Packard large-signal network 
analyzer (LSNA) [14] set up in the conventional 
way and calibrated with the procedures outlined 
in [15]. We injected a 4 GHz sine wave into port 
1 (the input) of the transistor and drove the 
transistor at power levels ranging from its small-
signal regime far into saturation. We used this 
signal to derive our time reference for the 
measurements. 

We simultaneously applied a small -24 dBm 
signal at the same frequency at the output of the 
transistor. The phases of this incident signal 
were uniformly distributed between 0 and 360 
degrees. We used this small signal incident on 
port 2 to determine S22 and S′22 with the 
procedure described in the appendix. With a 
more complicated setup we could have 
measured the other elements of [S] and [S′]. 

The symbols in Fig. 2 correspond to the 
complex outgoing wave coefficients b2 we 
measured with the LSNA at the output of the 
transistor in response to the small -24 dBm 
incoming waves. These are plotted as a function 
of the drive power corresponding to the first 
element of A0 on port 1 at the input of the 
transistor. The solid lines in Fig. 2 show the fits 
we used to determine S22 and S′22 from the 
measured data. Sticking with convention, we set 
the reference impedance for the measurements 
to 50 � 

The arrows in the figure indicate the 
direction in which the phase of the outgoing 
wave coefficient b2 changes as the phase of the 
wave coefficient a2 incident on the output port 
of the transistor increases. At the lowest 
transistor drive levels, increasing the phase of a2 
increases the phase of b2. 

However, as the input drive power on port 1 
is increased, the rate of increase in the phase of 
b2 eventually stops, and then reverses, as 
indicated by the arrows in the figure. This phase 
reversal is analogous to that of the phase 
conjugator of Fig. 1, and is due to the mixing of 
the second harmonic of the 4 GHz drive signal 
incident on port 1 generated by the transistor 
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Fig. 3. Comparison of transistor gain, S22, and S 22. S 22 
approaches 0 when the transistor operates in its small-
signal regime, but becomes large and eventually 
exceeds S22 as the amplifier goes into saturation. 
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Fig. 4. Root-mean-square error in the predictions of 
the linearization as a function of the power of the 
small signal incident on port 2 of the transistor. 
Measurement noise raises the RMS error at very low 
incident powers. As the power rises, the 
approximations begin to slowly degrade. 
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with the small signal incident on port 2 of the 
transistor. At high drive powers this mixing 
generates a phase-conjugated mixing product at 
4 GHz whose phase decreases when the phase 
of the incident signal is increased. 

Note that if S′22 was equal to zero, the 
trajectories in Fig. 2 would all lie on circles and 
rotate in the counter-clockwise direction. 
Clearly this would not explain the measured 
results correctly. 

Figure 3 compares the transistor’s gain to the 
magnitude of S22 and S′22 as a function of the 
drive power at the transistor’s input. Fig. 3 
shows that the magnitude of S′22 decreases 
monotonically as the drive power on the 
transistor’s input decreases. The figure also 
shows that the magnitude of S′22 increases as the 
amplifier enters saturation, and eventually 
becomes larger than the magnitude of S22 as the 
drive power at the transistor’s input exceeds -6 
dBm. At this point, the progression of the 
phases of b2 in Fig. 2 reverses, as expected from 
(4). 

We also briefly investigated the limits within 
which our linearization is valid for this 
particular device. We first measured S22 and S′22 
with a small incident signal a2 at the transistor’s 

output. Then we plotted the root-mean-square 
differences of the actual b2 we measured and the 
b2 we predicted from S22 and S′22 in Fig. 4. The 
figure shows that our linearization is capable of 
predicting the transistor’s response within a few 
percent when the incident signal a2 on port 2 is 
much smaller than the drive signal a1 on port 1, 
but begins to degrade when the incident power 
on port 2 approaches the drive power on port 1. 
This illustrates an important limitation of the 
linearization. While the linearization is useful 
for predicting the first-order behavior of weakly 
nonlinear devices in large-signal operation, it 
clearly cannot predict second-order effects that 
could be predicted by physical or other more 
complex circuit models. 
 

SOURCE CHARACTERIZATION 
 
The reflection coefficients of microwave 

sources often vary with the power being 
generated by the source. Furthermore, it is 
difficult and often impossible to measure the 
reflection coefficient of microwave sources 
while they are operating with a conventional 
network analyzer. 

Here we show how our linearization can be 
used to characterize the small-signal reflection 
coefficients of microwave sources in their large-

Fig. 5. The measurement configuration we used to 
measure the reflection coefficients � ���� � ��� ��
microwave source with our LSNA. We turned the 
vector modulator in the source off for these 
experiments. The calibration reference planes are 
indicated by vertical dashed lines. 

����������	�
�����
�	�������	��	��	��������	�����	���� �
���� � ��� �
��
�������	� ��
��	 both with the ALC 
turned on and off. 

detector

ALC
sig
out

50 
load

Ω

LSNA
MEAS

PORT 1

unmodulated
carrier

LSNA
MEAS

PORT 2

MICROWAVE SOURCE
UNDER TEST

10 dB

PAD

VECTOR
SIGNAL

GENERATOR

(SMALL
SIGNAL)

sig
out

MICROWAVE 
SOURCE
UNDER
TEST

unmodulated
carrier

a1

b2

a2

 

-75

-65

-55

-45

-35

-25

-15

-15 -10 -5 0 5 10 15

ALC on

ALC off

Γ

Γ ′

Source power level (dBm)

R
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (

dB
)

 



 12 

signal operating state. To illustrate, we 
calibrated an Agilent LSNA [14]� ��� �� ���  
reference impedance in the conventional way 
[15] at the two coaxial reference planes 
indicated by the vertical dashed lines in Fig. 5. 
We then used the LSNA to characterize a 
microwave source (in our case, a vector signal 
generator) at 2 GHz. 

After calibrating the LSNA, we rearranged 
the measurement configuration as illustrated in 
Fig. 5. To establish an independent time 
reference for the measurements, we fed the 
signal from the unmodulated output port of the 
microwave source under test into the point at the 
rear of the couplers on port 1 of the LSNA 
where the LSNA’s synthesizer is typically 
connected and terminated the measurement port 
�� ��� �� ��� � ����. We used this signal to 
establish a common time reference for the 
measurements by setting to 0 the phase of a1 
measured by the LSNA at the reference plane on 
port 1 at 2 GHz. Note that we could not have 
used the output of the microwave source to 
establish a time reference for the measurements, 
as the phase of the source’s output signal 
changes in response to small signals injected 
into its output during the characterization 
procedure. 

We then connected the output of the 
microwave source under test to the second 
measurement port of the LSNA. We used the 
second vector signal generator to superimpose 
40 small a2 input signals on the large output 
signal b2 generated by the microwave source 
under test. Each of these 40 small a2 input 
signals had an amplitude about 10 dB below the 
large b2 signal generated by the microwave 
source, had phases uniformly distributed 
between 0 and 360 degrees, and was at the same 
frequency as the b2 signal generated by the 
source. We also could have used a fixed source 
slightly offset in frequency from the microwave 
source under test to generate these small a2 
input signals. 

Finally, we used the LSNA measurements of 
a2 and b2 and the procedure described in the 

appendix to determine the small-signal 
�	��	��������	�����	���� ����� �(the S22 and S22 �
we measure with the LSNA) of the microwave 
source under test with respect to the time 
reference we derived from the source’s 
unmodulated output. 

We m	��
�	�� � ���� ������ ��	�
�������	�
source’s automatic level control (ALC) both 
turned on and turned off. The ALC monitors the 
signal level at the output of the microwave 
source and compensates dynamically for the 
detected variations. 

Figure 6 compares the magnitudes of � ����
����	����
�	�����������, with the ALC turned 

off, the source’s conventional reflection 
��	�����	��� � dominates. In this situation, one 
could use standard mismatch corrections to 
estimate the power delivered by the source to a 
load. 

However, Fig. 6 also shows that when the 
 !"�����
��	������ ������������ant and can even 
	#�		�� � �� higher output power levels. In 
essence, with the ALC on, the signal generator 
attempts to maintain a uniform output power 
even when illuminated by the small excitation 
signal a2 from the second generator. This classic 
������	�����
������$	����������	�����	���� . 

In fact, if the generator’s ALC was able to 
exactly compensate for the reflected a2 wave 
and maintain a perfectly constant output 
magnitude |b2|, the trajectory of b2 would be 
forced to lie on a short arc defined by a constant 
|b2|. In this case, the magnitudes of � ���� �
would be equal. However, since the ALC cannot 
differentiate between the forward and backward 
waves incident on its sensor, it does an 
imperfect job of maintaining a constant output 
level. This gives rise to the difference in the 
magnitudes of the� � ����  we measure when 
the ALC is on. 

We note that w�	��  is significant, we 
cannot describe its electrical behavior in terms 
of a Thévenin equivalent circuit, and we will not 
be able to use conventional mismatch 
corrections to determine the power that the 
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source delivers to a load. Rather, we will have 
to use equation (13) for this purpose. 

We also note that, once we have 
characterized the signal generator in this way, 
we can use (8) and (9) to translate the time 
refe�	��	����� ����� ������
	����	������	��	���
value. For example, we might choose a time for 
which the phase of the large output signal 
emanating from the generator is equal to 0. 
 

“HOT” SCATTERING PARAMETERS 
 
The “Hot” scattering parameters of [5-9] are 

also a linearization of the large-signal behavior 
of weakly nonlinear devices. However, the 
scattering parameters of [5-9] were not 
developed to handle the dependence of b on 
both a and a*, limiting their usefulness. For 
example, the scattering parameters of [5-9] 
cannot model outgoing waves from a device 
whose phases decrease when the phase of the 
coefficient of the incoming wave increases. 
Thus they cannot model the electrical behavior 
of an image mixer, phase-conjugating circuits, 
transistors or amplifiers near saturation, or the 
electrical sources we characterized in this paper. 
Nevertheless, the scattering parameters of [5-9] 
can be considered to correspond to a sub-matrix 
of the scattering parameter matrix [S] we 
describe here, and represent a limited 
linearization of weakly nonlinear behavior. 
 

CONCLUSION 
 
We have presented a linearization of large-

signal scattering functions that takes a form 
similar to that of the conventional scattering 
parameters used to describe linear circuits and 
devices. The representation we develop 
describes the response of weakly nonlinear 
devices to small excitations in a compact way. 
Furthermore, commercial large-signal network 
analyzers provide a convenient way of 
measuring the parameters describing the 
linearization. 

In developing the theory, we avoided 
restrictions to harmonic signals and used a 
fixed, rather than an input-dependent, time 
reference for the linearization. We also showed 
that the linearization encompasses the 
conversion matrix approach commonly used to 
describe electrical mixers. 

Finally, we illustrated the theory with several 
examples and with measurements of transistors 
and sources. All of these examples 
demonstrated the importance of the terms in the 
linearization describing the phase-conjugating 
behavior of nonlinear devices. While more 
study is certainly warranted, we also explored in 
a brief way some of the limitations of the 
linearization. 
 

APPENDIX 
LEAST-SQUARES FIT OF [S] AND [S � FROM 

MEASUREMENT DATA 
 
In this work we solved for individual 

elements of [S] and [S �� one at a time with a 
classic linear least-squares fit. The goal was to 
find [S] and [S �� that best satisfy (5). An 
examination of (11) shows that to find an 
approximation for Sij and Sij ���	�must estimate 
the B0i, Sij and Sij  that best fit the equation 

 
)19(,*

0 jijjijii aSaSBB ′++≈  

where Bi and B0i are the ith elements of B and 
B0, respectively. Since (19) is linear in the B0i, 
Sij and Sij ���	���������	����� ��	�B0i, Sij and Sij �
with a linear least squares fit. 

To do this, we performed a set of 
measurements of the large-signal responses Bik 
of the device to different small-signal inputs ajk. 
Here the index k corresponds to measurement 
number, and each measurement is performed 
with different small-signal input ajk. 

To estimate Sij and Sij  from the data, we first 
arranged the small-signal input wave 
coefficients ajk and large-signal responses Bik 
into two vectors a and B. We then constructed a 

����#� � ����	� ������ ���

�� ��� filled with 
ones, whose second column was equal to a, and 
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whose third column was equal to a*, the 
conjugate of a. Finally, we calculated the vector 

 

( ) )20(,)( H1H B⋅⋅⋅= −
s  

��	�	� H is the Hermitian conjugate (the 
���%
���	������&��	'���� . The three elements of 
s are the least-squares estimators of B0i, Sij, and 
Sij , respectively. 

While it is known that this approach does not 
yield the best possible estimates in the presence 
of noise, it is extremely robust and easy to 
program. We also found that it offered very 
good estimates of B0i, Sij, and Sij �������	������(�
over-determined data sets we used.  

In our experiments we held the magnitude of 
each ajk constant while we varied the phase of 
each ajk with k so that the small-signal inputs 
traced out a small circle in the complex plane. 
However, the approach is quite general. Not 
only can the method incorporate other data sets 
with no change in the procedure, but it is 
straightforward to simultaneously fit all of the 
elements of [S] and [S ����	����	�
	��
�	
	�t 
setup makes it difficult to control the small-
signal excitation separately at each port and 
frequency. 
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